UNIVERSITY OF ENGINEERING AND MANAGEMENT, KOLKATA

DEPARTMENT OF COMPUTER APPLICATIONS

PROGRAM: MASTER OF COMPUTER APPLICATIONS

DETAILED SYLLABUS

BATCH: 2021 – 2023

UNIVERSITY OF ENGINEERING & MANAGEMENT, NEW TOWN, UNIVERSITY AREA, PLOT NO. III, B/5, NEW TOWN RD, ACTION AREA III, NEWTOWN, NEW TOWN, WEST BENGAL 700160

Table of Contents

Syllabus Structure	1
1 st Year 1 st Semester	1
1 st Year 2 nd Semester	2
2 nd Year 1 st Semester	3
2 nd Year 2 nd Semester	4
Syllabus for MCA Admission Batch 2021, 1st Semester	5
MCA101: Computer Organisation and Architecture	5
MCA191: Micro Programming and Architecture Laboratory	8
MCA102: Computer Programming with C 1	0
MCA192: C Programming Laboratory 1	13
MCA103: Data Structure with C 1	17
MCA193: Data Structures with C Laboratory 2	20
MCA104: Discrete Mathematical Structure	24
MCA105: Business English and Communication2	26
MCA(GS)101: Essential Studies for Professionals-I 2	29
MCA(GS)181: Competitive Aptitude Training – I	32
Syllabus for MCA Admission Batch 2021, 2 nd Semester	
MCA201: Database Management System	35
MCA291: Database Management System Laboratory	38
Annexure – I (SQL based Lab – Assignments)	
MCA202: Object-Oriented Programming4	14
MCA292: Object Oriented Programming with Java Laboratory4	17
Annexure – I (Programming Based Lab – Assignments) 4	18
MCA203: Data Communication & Computer Networks5	53
MCA204: Graphics and Multimedia5	56
MCA205: Statistics and Numerical Techniques5	58
IVC(MC)201: General Studies & Current Affairs - I	50
IVC(MC)202: Competitive Aptitude Training – II	52
Syllabus for MCA Admission Batch 2021, 3 rd Semester	54
MCA301: Operating Systems and Systems Software	54
MCA393: Operating Systems Laboratory (Unix)6	56
MCA303: Data Science and Data Analytics6	58
MCA392: Data Science and Data Analytics Laboratory7	71
MCA304: Software Engineering & TQM7	74
MCA394: Software Project Management Laboratory7	
MCA305: Values and Ethics	78

	MCA306: Environment and Ecology	81
	MCA(GS)301: Essential Studies for Professionals-III	
	MCA(GS)381: Competitive Aptitude Training – III	
	MCA391: Minor Project	
	MCA381: Industrial Training	
i	Syllabus for MCA Admission Batch 2021, 4 th Semester	
	MCA401A: Distributed Database Management	
	MCA401B: Image Processing	
	MCA401C: Parallel Programming	
	MCA401D: Cloud Computing	101
	MCA402A: Compiler Design	104
	MCA402B: Mobile Computing	106
	MCA402C: Embedded Systems	109
	MCA403: Operation Research & Optimisation Techniques	112
	MCA405: Management & Accounting	114
	MCA(GS)401: General Studies & Current Affairs - IV	116
	MCA(GS)481: Competitive Aptitude Training – IV	119
	MCA491: Major Project	121

Syllabus Structure

1st Year 1st Semester

		Tot	Total No.			
Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical	Total	of Credits
	(P)	Hours				
MCA101	Computer Organization and	ster (Theo	l y)			
-	Architecture	3	1	0	4	3
MCA102	Computer Programming with C	3	1	0	4	4
MCA103	Data Structures with C	3	1	0	4	4
MCA104	Discrete Mathematical Structure	3	1	0	4	3
MCA105	Business English and Communication	3	1	0	4	3
IVC(MC)101	IVC(MC)101 Essential Studies for Professionals - I			0	4	0
	Total of Theory	•	•	•	24	17
	1 st Semest	ter (Practi	ical)			
MCA191	Micro Programming and Architecture Laboratory	0	0	3	3	3
MCA192	C Programming Laboratory	0	0	3	3	3
MCA193	Data Structures with C Laboratory	0	0	3	3	3
	Total of Practica	1	•	•	9	9
_	1 st Semest		nal)			
IVC(MC)102			1	0	3	0
MC181 Mandatory Additional Requirements (Co- Curricular/Extra-Curricular Activity)		0	0	0	0	1
	Total of Sessiona	ıl <u> </u>			3	1
	Total of Semeste	r			36	27

		To	Total						
Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours	No. of Credits			
	2 nd Semester (Theory)								
MCA201	Database Management System	3	1	0	4	4			
MCA202	Object-Oriented Programming with Java	3	1	0	4	4			
MCA203	Data Communication & Computer Networks	3	1	0	4	3			
MCA204	Graphics and Multimedia	3	1	0	4	3			
MCA205	Statistics and Numerical Techniques	3	1	0	3	3			
IVC(MC)201	Essential Studies for Professionals–I	3	1	0	4	0			
	Total of Theory				24	17			
	2 nd Semeste	er (Practi	cal)						
MCAC291	Database Management System Laboratory	0	0	3	3	3			
MCAC292	Object-Oriented Programming with Java Laboratory	0	0	3	3	3			
	Total of Practical				6	6			
	2 nd Semeste	er (Sessio	nal)		-	-			
IVC(MC)102	VC(MC)102 Skill Development for Professionals–I		1	0	3	0			
MCA281	Mandatory Additional Requirement (Co-Curricular/ Extra Curricular Activity)	0	1	0	1	1			
	Total of Sessional				4	1			
	Total of Semester	•			34	24			

1st Year 2nd Semester

		To	Total No.			
Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours	of Credits
	3 rd Semes	ster (Theo	ory)			
MCA301	Operating Systems and Systems Software	3	1	0	4	3
MCA302	Data Science and Data Analytics	3	1	0	4	4
MCA303	Unix and Shell Programming	3	1	0	4	3
MCA304	Software Engineering & TQM	3	1	0	4	4
MCA305	Values and Ethics	2	0	0	2	1
MCA(GS)301	General Studies & Current Affairs - III	3	1	0	4	0.5
	Total of Theory				22	15.5
	3 rd Semest	ter (Pract	ical)			
MCA391	Minor Project	0	0	12	12	6
MCA392	Data Science & Data Analytics Laboratory	0	0	3	3	3
MCA393	Unix Laboratory	0	0	3	3	3
MCA394	Software Project Management Laboratory	0	0	3	3	3
	Total of Practical			•	21	15
	3 rd Semest	ter (Sessio	onal)			
MCA381	Industrial Training	0	0	0	0	0
MCA(GS)381	Competitive Antitude		1	0	3	0.5
MC381 Mandatory Additional Requirement (Co- Curricular/Extra Curricular Activity)		0	1	0	1	1
	Total of Sessional				4	1.5
	Total of Semester	•			46	33

2nd Year 1st Semester

				Total No. of Contact Hours					Total No.
Course C	Course Code		Course Title	Lecture (L)	Tutorial (T)		ctical (P)	Total Hours	of Credits
			4 th Semest	er (Theor	ry)	•		•	
MCA401 A/B/C/D		Electiv	re - I	3	1	0		4	3
MCA402 A/B/C		Electiv	re - II	3	1	0		4	3
MCA403		-	ion Research & sation Techniques	3	0	0		3	3
MCA405			ement & Accounting	2	0	0		2	2
MCA(GS)	401	Genera Affairs	ll Studies & Current - IV	3	1	0		4	0.5
			Total of Theory					21	11.5
			4 th Semeste	er (Practi	cal)				
MCA491		Major	Project	0	0	30		30	15
			Total of Practical					30	15
		-	4 th Semeste	r (Session	nal)				
MCA481		Semina		0	0	0		3	1
MCA(GS))481	Affairs		2	1	0		3	0.5
MC481		Requir	tory Additional ement (Co-Curricular Curricular Activity)	0	1	0		1	1
			Total of Sessional					7	2.5
			Total of Semester					58	29
Elective No.	Cour	se Code	Торіс	Elective No.	Cours Code		Торіс		
	MCA401A MCA401B		Distributed Database Management		MCA4	02A	Compiler Design		gn
Ŧ			Image Processing	II	MCA4	MCA402B		Mobile Computing	
Ι	MC	A401C	Parallel Programming		MCA402C		Embedded Systems		tems
	MCA	4401D	Cloud Computing		•				

2nd Year 2nd Semester

University of Engineering and Management, Kolkata

Syllabus for MCA Admission Batch 2021, 1st Semester

Course Name: Computer Organisation and Architecture Credit: 3

Course Code: MCA101

Lecture Hours: 40

Name of the Course: Computer Organization and Architecture							
Course Code: M	CA101	Semester: 1 st					
Duration: 40 Hrs	5.	Maximum Marks: 100					
Teaching Schem	e	Examination Scheme					
Theory: 3		End Semester Exam: 100					
Tutorial: 1		Continuous Assessment: 100					
Credit: 3							
Aim:							
1	To have a thorough un of a digital computer.	derstanding of the basic structure and operation					
2	To study the different standard I/O interfaces	communication methods with I/O devices and 3.					
3	To learn the architectu microprocessor.	re and assembly language programming of 8085					
Objective:	· •						
1	Understanding Logic ga	tes, flip flops and counters.					
2	Clear Understanding of Computer Architecture.						
3	3 Clear Understanding of Pipeline processing, RISC and CISC architectures						
4	4 Develop a base for advanced microprocessors.						
Pre-Requisite:							
1.	Proficiency in basic D	igital Electronics					

Course Outcome:	
1.	Summarize the fundamental components of a basic computer system and its organization.
2.	Apply arithmetic and logical microoperations of binary number systems.
3.	Analyze control unit design and concept of pipelining.
4.	Classify memory hierarchy and examine numerical problems based on it.

CO s	PO 1	РО 2	РО 3	PO 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO 1	3	2	2	3	-	-	-	-	-	2	-	2	-	-	-
CO 2	3	2	2	2	-	-	1	-	-	2	-	2	-	-	-
CO 3	2	2	3	3	-	-	1	-	-	2	-	2	-	-	-
CO 4	3	2	3	2	-	-	-	-	-	2	-	2	-	-	-

Module number	Торіс	Sub-topics
1	Structure of Computers and Computer Arithmetic	Computer types, Functional units, Basic operational concepts, von Neumann Architecture, Bus Structures, Software, Performance, Multiprocessors and Multicomputer, Data representation, Fixed and Floating point, Error detection and correction codes Addition and Subtraction, Multiplication and Division algorithms, Floating-point Arithmetic Operations, Decimal arithmetic operations.
2	Basic Computer Organization and Design	Instruction codes, Computer Registers, Computer Instructions and Instruction cycle. Timing and Control, Memory-Reference Instructions, Input-Output and interrupt. Central processing unit: Stack organization, Instruction Formats, Addressing Modes, Data Transfer and Manipulation, Complex Instruction Set Computer (CISC) Reduced Instruction Set Computer (RISC), CISC vs RISC.
3	Register Transfer, Micro-Operations and Micro- Programmed	Register Transfer Language, Register Transfer, Bus and Memory Transfers, Arithmetic Micro-Operations, Logic Micro- Operations, Shift Micro-Operations, Arithmetic logic shift unit,

	Control	Control Memory, Address Sequencing, Micro-Program example, Design of Control Unit.
4	Memory System:	Memory Hierarchy, Semiconductor Memories, RAM(Random Access Memory), Read Only Memory (ROM), Types of ROM, Cache Memory, Performance considerations, Virtual memory, Paging, Secondary Storage, RAID.
5	Input-Output:	I/O interface, Programmed IO, Memory Mapped IO, Interrupt Driven IO, DMA.
6	Multiprocessors	Characteristics of multiprocessors, Interconnection structures, Inter Processor Arbitration, Interprocessor Communication and Synchronization, and Cache Coherence.

List of Books Text Books:							
Name of Author	Title of the Book	Edition/ISSN/I SBN	Name of the Publisher				
M. Moris Mano	Computer System Architecture	3 rd Ed	Pearson/PHI				
Reference Books: 1. Carl Hamacher, Zvonks Vranesic, SafeaZaky (2002), Computer Organization, 5th edition, McGraw Hill, New Delhi, India.							

Name of the Course	Name of the Course: Computer Organization and Architecture							
Course Code: MCA	191	Semester: 1 st						
Duration: 12 Week	S.	Maximum Marks: 100						
Teaching Scheme		Examination Scheme						
Practical: 3		Practical Sessional Internal continuous evaluation: 100						
Credit: 3		Practical Sessional external examination: 100						
Aim:								
1	To have a th of a digital c	orough understanding of the basic structure and operation computer.						
2	To study the standard I/O	e different communication methods with I/O devices and interfaces.						
3	To learn the microproces	architecture and assembly language programming of 8085 sor.						
Objective:	1							
1	Understandin	g Logic gates, flip flops and counters.						
2	Clear Unders	tanding of Computer Architecture.						
3	Clear Unders	tanding of Pipeline processing, RISC and CISC architectures.						
4	Develop a ba	se for advanced microprocessors.						
Pre-Requisite:	•							
1.	Proficiency	in basic Digital Electronics						
Course Outcome:	1							
1.	Summarize the fundamental components of a basic computer system and its organization.							
2.	Apply arithme	tic and logical microoperations of binary number systems.						
3.	Analyze contro	ol unit design and concept of pipelining.						
4.	Classify memo	bry hierarchy and examine numerical problems based on it.						

_____ **8)**_____

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	3	-	-	-	-	-	2	-	2	-	-	-
CO2	3	2	2	2	-	-	1	-	-	2	-	2	-	-	-
CO3	2	2	3	3	-	-	1	-	-	2	-	2	-	-	-
CO4	3	2	3	2	-	-	-	-	-	2	-	2	-	-	-

Module Number	Торіс	Suggested Assignments
1	Structure of Computers and Computer Arithmetic	 Write a VHDL code to study and perform about logic gates. Write a VHDL code to study and perform about De'Morgan's Theorem. Write a VHDL code to study and perform about NAND and NOR as a universal gates. Write a VHDL code to design and implement circuit that converts binary code to gray code.
2	Basic Computer Organization and Design	 Write a VHDL code to study and perform about Half Adder and full Adder. Write a VHDL code to study and perform about Half substractor and full substractor. Write a VHDL code to design 3-bit odd/even parity generator and checker. Write a VHDL code to study and perform about R-S and D flip flop. Write a VHDL code to study and perform about J-K and T flip flop. Write a VHDL code to study and perform about J-K and T flip flop. Write a VHDL code to study and perform about J-K and T flip flop. Write a VHDL code to study and perform about J-K and T flip flop.
3	Register Transfer, Micro-Operations and Micro- Programmed Control	 Write a VHDL code to realize Boolean functions using multiplexer. Write a VHDL code to study and perform about Decoder and Demultiplexer. Write a VHDL code to study the use of decoder for BCD to seven segment LED display. Write a VHDL code to study universal shift register

Course Name: Computer Programming with C

Course Code: MCA102

Lecture Hours: 40

Name of the Course:	Computer Programming	g with C					
Course Code: MCA1	.02	Semester: 1st					
Duration: 40 Hrs.		Maximum Marks: 100					
Teaching Scheme		Examination Scheme					
Theory: 3		End Semester Exam: 100					
Tutorial: 1		Continuous Assessment: 100					
Credit: 4							
Aim:							
1	To gain Knowledge of	Various aspects of algorithm development					
2	To enhance Ability to	identify qualities of a good solution					
3	To implement learned to solve problems.	algorithm design techniques and data structures					
Objective:							
1	The fundamental design, structures.	, analysis, and implementation of basic data					
2	Basic concepts in the spe	ecification and analysis of programs.					
3	Principles for good prog	gram design, especially the uses of data abstraction.					
4	Significance of algorithr	ns in the computer field					
Pre-Requisite:							
1.	Proficiency in one high	h-level programming language					
Course Outcome:							
1.	will be able to develop sin constructs	nple applications in C using basic					
2.	will be able to design and Strings	implement applications in C using Arrays and					
3.	will be able to design and and Pointers	implement applications in C using Functions					
4.		plications in C using the Structures and design tial and random-access file processing.					

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1	3	0	0	0	1	1	0	2	3	1	1
CO2	3	3	3	1	3	0	0	0	1	1	0	2	3	1	1
CO3	3	3	3	1	3	0	0	0	1	1	0	2	3	1	1
CO4	3	3	3	1	3	0	0	0	1	1	0	2	3	1	1

Module number	Торіс	Sub-topics
1	Basics of 'C' Programming	 Fundamentals of algorithms: Notion of algorithm, Notations used for assignment statements and basic control structures. Introduction to 'C': General structure of 'C' program, Header file, 'main ()' function. Fundamental constructs of 'C': Character set, tokens, keywords, Identifiers, Constants - number constants, character constants, string constants, Variables. Data types in 'C': Declaring variables, data type conversion. Basic Input and Output functions: input and output statements using printf(), scanf() functions. Assignments and expressions: simple assignment statements, arithmetic operators, shift operators, bitwise operators, sizeof operator
2	Control structures	Conditional statements: Relational operators, logical operators, if statement, if-else statements, nested if-else statements, if-else ladder, switch statement. Looping statements: while loop, do-while loop, for loop. Branching Statements: goto statement, use of 'break' and 'continue' statements.
3	Arrays and structure	 3.1 Characteristics of an array, One dimension and two dimensional arrays, concept of multi-dimensional arrays. 3.2 Array declaration and Initialization. 3.3 Operations on Arrays. 3.4 Character and String input/output and String related operations. 3.5 Introduction and Features of Structures, Declaration and Initialization of Structures, array of structures. 3.6 Type def, Enumerated Data Type

Module number	Торіс	Sub-topics
4	Functions	Concept and need of functions.
		Library functions: Math functions, String handling functions,
		other miscellaneous functions such as getchar(), putchar(),

- 11 **)**

		 malloc(), calloc(). Writing User-defined functions - function definition, functions declaration, function call, scope of variables - local variables, global variables. Function parameters: Parameter passing- call by value & call by reference, function return values, function return types, declaring function return types, The 'return' statement.
		Recursive functions.
5	Pointers	Introduction to Pointers: Definition, use of pointers, '*' and '&' operators, declaring, initializing, accessing pointers. Pointer arithmetic. Pointer to array. Pointer and Text string. Function handling using pointers. Pointers to structure.
6	File handling	Creation of the new file Opening an existing file Reading from the file Writing to the file Deleting the file

Name of Author	Title of the Book	Edition/ ISSN/ ISBN	Name of the Publisher
E. Balagurusamy	Programming in ANSI C	7 th Ed	McGraw Hill Educatior
5	t Kanetkar, 19th Edition., 5 Language by Brian W. Kernigha. 5 Venugopal	n and Dennis Rite	chie, 2 nd Edition

Name of the Course:	C Programmi	ng Laboratory				
Course Code: MCA1	.92	Semester: 1st				
Duration: 12 Weeks		Maximum Marks: 100				
Teaching Scheme		Examination Scheme				
Practical: 3		Practical Sessional Internal continuous evaluation: 100				
Credit: 3		Practical Sessional external examination: 100				
Aim:						
1	To gain Kno	owledge of Various aspects of algorithm development				
2	To enhance	Ability to identify qualities of a good solution				
3	To impleme to solve pro	nt learned algorithm design techniques and data structures blems.				
Objective:						
1	The fundame structures.	ntal design, analysis, and implementation of basic data				
2	Basic concep	ts in the specification and analysis of programs.				
3	Principles fo	or good program design, especially the uses of data abstraction.				
4	Significance	of algorithms in the computer field				
Pre-Requisite:						
1.	Proficiency	in one high-level programming language				
Course Outcome:						
1.	will be able to constructs	develop simple applications in C using basic				
2.	will be able to Strings	design and implement applications in C using Arrays and				
3.	will be able to and Pointers	design and implement applications in C using Functions				
4.		develop applications in C using the Structures and design sequential and random-access file processing.				

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1	3	0	0	0	1	1	0	2	3	1	1
CO2	3	3	3	1	3	0	0	0	1	1	0	2	3	1	1
CO3	3	3	3	1	3	0	0	0	1	1	0	2	3	1	1
CO4	3	3	3	1	3	0	0	0	1	1	0	2	3	1	1

Module Number	Торіс	Suggested Assignments
Number 2	Control structures	 Write a C program to find sum and average of three numbers. Write a C program to find the sum of individual digits of a given positive integer. Write a C program to generate the first n terms of the Fibonacci sequence. metrices from the console, verifies if metrics multiplication is possible or not. Then multiplies the metrices and prints the 3rd metrics. Write a C program to generate prime numbers between 1 to n. Write a C program to Check whether given number is Armstrong Number or Not. Write a C program to check if the given number is perfect number? Write a C program to check if given number is strong number? Write a program to print your name without using any semicolon in the program. Write a C program to check whether a number is Palindrome or not. Write a C program to find maximum between two numbers. Write a C program to check whether a number is negative, positive or zero. Write a C program to check whether a number is negative, positive or zero. Write a C program to check whether a number is divisible by 5 and 11 or not within the range 100 to 500. Write a C program to check whether a number is alaphabet or not. Write a C program to check whether a humber is negative, positive or zero.
2	Amore and	 whether it is vowel or consonant. 20. Write a C program to input any character and check whether it is an alphabet, digit or special character.
3	Arrays and structure	 Write a program to store marks for n number of student in an array and print their marks. Write a program which stores the marks of subject Mathematics and English of n number of students in an array and then prints their individual total marks. Write a program to insert an element in an array in a particular position. Write a program to delete an element from a particular position of an array.

· · · · · · · · · · · · · · · · · · ·	
5. Write a program to convert a deciminput from user to corresponding bir store the result in an array.	
6. Write a program to input a binary nu	-
and convert into corresponding deci7. Write a program to find the smallest	
elements in an array.	and the largest
8. Write a program for deleting duplication	ate elements in an
array.	
9. Write a program to search for a part an array.	icular element in
10. Write a program to sort n elements	ascending order).
11. Write a program to find second high	est number from
the array without using sorting. 12. Write a program to perform addition	and subtraction
between two matrices.	and subtraction
13. Write a program to transpose a matri	
14. Write a program to add the elements	s of each row and
each column of a matrix. 15. Write a program to perform the mul	tiplication of two
matrices.	upneation of two
16. Write a program to check whether a	matrix is identity
matrix or not.	motrix is sparse
17. Write a program to check whether a matrix or not	matrix is sparse
18. Write a C program to create a struct	ure named
company which has name, address,	-
Employee as member variables. Rea company, its address, phone and no	
Finally display these members" values	
19. Define a structure "complex" (typed	lef) to read two
complex numbers and perform addi	
these two complex numbers and dis 20. Write a C program to read Roll No,	
and Age marks of 12 students in the	
display the details from the function	
4 Functions 1. Write a C program to add, subtract,	
divide two integers using a user-def with return type.	ined type function
2. Write a C program to calculate sum	of first 20 natural
numbers using recursive function.	
3. Write a C program to generate Fibo recursive function.	nacci series using
4. Write a C program to swap two inte	gers using call by
value and call by reference methods	
arguments to a function.	aita of the much on
5. Write a C program to find sum of di	gits of the number
using Recursive Function.	
using Recursive Function.6. Write a C program to read an integer	r number and print
6. Write a C program to read an intege the reverse of that number using rec	ursion.
6. Write a C program to read an integer the reverse of that number using rec7. Write a C program to find maximum	ursion. n and minimum
 6. Write a C program to read an integer the reverse of that number using rec 7. Write a C program to find maximum between two numbers using function 	ursion. 1 and minimum 1s.
6. Write a C program to read an integer the reverse of that number using rec7. Write a C program to find maximum	ursion. n and minimum ns. r a number is even

		prime, Armstrong or perfect number using functions.
		Write a C program to find power of any number using
		recursion.
5	Pointers	1. Write a C program to find the sum of all the
3	Fointers	
		elements of an array using pointers.
		2. Write a C program to swap value of two variables using
		pointer.
		3. Write a C program to add two numbers using pointers.
		4. Write a C program to input and print array elements using
		pointer.
		5. Write a C program to copy one array to another using
		pointer.
		6. Write a C program to swap two arrays using pointers.
		7. Write a C program to reverse an array using pointers.
		8. Write a C program to search for an element in array using
		pointers.
		9. Write a C program to add two 2 X 2 matrix using pointers.
		10. Write a C program to multiply two 2 X 2 matrix using
		pointers.
		11. Write a C program to find length of string using pointers.
		12. Write a C program to copy one string to another using
		pointer.
		13. Write a C program to concatenate two strings using
		pointers.
		14. Write a C program to compare two strings using pointers.
		10. Write a C program to find a substring from a given
		string using pointers.
6	File handling	1. Write a C Program to list all files and sub-directories in a
Ŭ	1	directory.
		 Write a C Program to count number of lines in a file.
		3. Write a C Program to print contents of file.
		 Write a C Program to copy contents of one file to another Write a C Program to copy contents of one file to another
		file.
		5. Write a C Program to merge contents of two files into a
		third file.
		6. Write a C program to delete a file.

Course Name: Data Structure with C

Credit: 4

Course Code: MCA103

Lecture Hours: 40

Name of the Course:	Name of the Course: Data Structure with C					
Course Code: MCA1	103	Semester: 1st				
Duration: 40 Hrs.	ion: 40 Hrs. Maximum Marks: 100					
Teaching Scheme		Examination Scheme				
Theory: 3		End Semester Exam: 100				
Tutorial: 1		Continuous Assessment: 100				
Credit: 4						
Aim:	1					
1	To gain Knowledge of	Various aspects of algorithm development				
2	To enhance Ability to	identify qualities of a good solution				
3	To implement learned to solve problems.	algorithm design techniques and data structures				
Objective:						
1	The fundamental design, structures.	analysis, and implementation of basic data				
2	Basic concepts in the spe	ecification and analysis of programs.				
3	Principles for good prog	gram design, especially the uses of data abstraction.				
4	Significance of algorithm	ns in the computer field				
Pre-Requisite:						
1.	Proficiency in one high	n level programming language				
Course Outcome:	T					
1.	-	ourse students are expected to learn their usages, merits and limitations.				
2.	On completion of this c analyze various algorith	ourse students are expected to design and ums.				
3.	On completion of this c comparative analysis ar	course students are expected to do a among different data structuresand decide on ructure to be used in a given scenario.				
4.	1	ourse students are expected to acquire d skills to solve a real lifesoftware problem.				

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	1	2	-	-	-	-	-	-	1	1	2	2
CO2	3	3	1	2	1	-	-	-	-	-	-	2	3	2	1
CO3	3	2	2	3	2	-	-	-	-	-	-	1	3	2	1
CO4	2	2	3	2	2	-	-	-	-	-	-	2	3	2	2

Module number	Торіс	Sub-topics
1	Algorithm Concept	Algorithm concept, Time Complexity, Space Complexity, Running Time– Worst Case, Best Case, Average Case, time space trade-off, Algorithm Efficiency-Linear loops, Logarithmic loops, Nested loops, Time complexity comparison- Polynomial vs Exponential, Algorithm Notations-Big O, Big Omega, Theta Notation
2	Introduction to Data Structure, Array	Program Efficiency, Data Structure-definition, usage, examples, Selection of Appropriate Data Structure, Data Structure-some terminologies, Classification of Data Structure, Fundamental difference between Linear and Non-linear Data Structure with examples, Operations on Linear Data Structure Introduction to Linear Data Structure-Array, 1D, 2D arrays, Row/Column major representation, sparse matrix
3	Linear Data Structure-Linked List	Linked List-Introduction, Representation, Memory Allocation, Types- Singly, circular, doubly, doubly & circular, Operations on various linked lists-Count, Traverse/Display, Search, Insert, Delete
4	Linear Data Structure-Stack	Introduction, Stack Operations – Push, Pop, Peek, Representation of Stack (Array, Linked List), Application of Stack: Reversing a list, Parentheses checker, Conversion of an infix expression into a postfix expression, Evaluation of a postfix expression, Conversion of an infix expression into a prefix Expression, Evaluation of a prefix expression, Recursion, Tower of Hanoi
5	Linear Data Structure-Queue	Introduction, Queue Operations – Enqueue, Dequeue, Peep, Representation of Queue (Array, Linked List), Types of Queues- Circular Queue, Deque, Priority Queue, Multiple Queue; Various operations (Enqueue, Dequeue, Peep) on the above mentioned queues-Both iterative & recursive implementation; Application of Queue
6	Searching & Sorting	Searching- Types of Searching (Linear Search, Binary Search, Interpolation Search), Comparison among various Searching techniques Sorting-Types, Methods (Bubble Sort, Insertion Sort, Selection Sort, Quick Sort, Merge Sort), Technique, Explanation, Algorithm and Examples on various sorting methods, Comparison of various sorting algorithms in terms of time complexity (Average case, Worst case)

List of Books Text Books:							
Name of Author	Name of Author	Name of Author	Name of Author				
Reema Thareja	Reema Thareja	Reema Thareja	Reema Thareja				
Reference Books:		Thureju					
Tenenbaum	Data Structure Using C & C++	2 nd Ed	PEI				
Kruse, Tondo & Leung	Data Structures & Program Design in C	2 nd Ed	РНІ				
Loudan	Mastering Algorithms With C		SPD/O'REILLY				
Radhaganesan	C and Data Structures		Scitech Publications				

Name of the Course: Data Structures with C Laboratory					
Course Code: MCA1	93	Semester: 1st			
Duration: 12 Weeks.		Maximum Marks: 100			
Teaching Scheme		Examination Scheme			
Practical: 3		Practical Sessional Internal continuous evaluation: 100			
Credit: 3		Practical Sessional external examination: 100			
Aim:					
1	To gain Knov	vledge of Various aspects of algorithm development			
2	To enhance th	ne Ability to identify qualities of a good solution			
3	To implement to solve probl	t learned algorithm design techniques and data structures ems.			
Objective:					
1	The fundament structures.	tal design, analysis, and implementation of basic data			
2	Basic concepts	in the specification and analysis of programs.			
3	Principles for	good program design, especially the uses of data abstraction.			
4	Significance of	f algorithms in the computer field			
Pre-Requisite:	1				
1.	Proficiency in	n one high-level programming language			
Course Outcome:	1				
1.	1	of this course, students are expected to learn ructures, their usages, merits and limitations.			
2.	On completion analyze variou	of this course, students are expected to design and s algorithms.			
3.	comparative ar	of this course students are expected to do a nalysis among different data structures and decide on e data structure to be used in a given scenario.			
4.	1	of this course students are expected to acquire vledge and skills to solve a real-lifesoftware problem.			

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	1	2	-	-	-	-	-	-	1	1	2	2
CO2	3	3	1	2	1	-	-	-	-	-	-	2	3	2	1
CO3	3	2	2	3	2	-	-	-	-	-	-	1	3	2	1
CO4	2	2	3	2	2	-	-	-	-	-	-	2	3	2	2

Module Number	Торіс	Suggested Assignments
Number 2	Control structures	 Write a C program to find sum and average of three numbers. Write a C program to find the sum of individual digits of a given positive integer. Write a C program to generate the first n terms of the Fibonacci sequence. metrices from the console, verifies if metrics multiplication is possible or not. Then multiplies the metrices and prints the 3rd metrics. Write a C program to generate prime numbers between 1 to n. Write a C program to check whether given number is Armstrong Number or Not. Write a C program to evaluate the algebraic expression (ax+b)/(ax-b). Write a C program to check if the given number is perfect number? Write a C program to check if given number is strong number? Write a program to print your name without using any semicolon in the program. Write a program to check whether a number is Palindrome or not. Write a C program to find maximum between two numbers. Write a C program to check whether a number is negative, positive or zero. Write a C program to check whether a number is negative, positive or zero. Write a C program to check whether a number is negative, positive or zero. Write a C program to check whether a number is divisible by 5 and 11 or not within the range 100 to 500. Write a C program to check whether a number is even or odd. Write a C program to check whether a number is even or odd. Write a C program to check whether a number is even or odd. Write a C program to check whether a number is divisible by 5 and 11 or not within the range 100 to 500. Write a C program to check whether a number is even or odd. Write a C program to check whether a number is a leap year or not. Write a C program to check whether a number is divisible by 5 and 11 or not within the range 100 to 500. Write a C p
3	Arrays and structure	 whether it is an alphabet, digit or special character. Write a program to store marks for n number of student in an array and print their marks. Write a program which stores the marks of subject Mathematics and English of n number of students in an array and then prints their individual total marks. Write a program to insert an element in an array in a particular position. Write a program to delete an element from a particular

		5.	Write a program to convert a decimal number taken as input from user to corresponding binary number and store the result in an array.
		6.	Write a program to input a binary number in an array
		_	and convert into corresponding decimal number.
		7.	Write a program to find the smallest and the largest
		8.	elements in an array. Write a program for deleting duplicate elements in an
		0.	array.
		9.	Write a program to search for a particular element in
		10	an array. Write a program to sort n elements (ascending order).
			Write a program to find second highest number from the array without using sorting.
		12.	Write a program to perform addition and subtraction
			between two matrices.
			Write a program to transpose a matrix.
		14.	Write a program to add the elements of each row and each column of a matrix.
		15	Write a program to perform the multiplication of two
		10.	matrices.
		16.	Write a program to check whether a matrix is identity
		1.7	matrix or not.
		1/.	Write a program to check whether a matrix is sparse matrix or not
		18.	Write a C program to create a structure named
			company which has name, address, phone and no Of
			Employee as member variables. Read name of
			company, its address, phone and no Of Employee.
		19	Finally display these members" value. Define a structure "complex" (typedef) to read two
		1).	complex numbers and perform addition, subtraction of
			these two complex numbers and display the result.
		20.	Write a C program to read Roll No, Name, Address,
			and Age marks of 12 students in the BCT class and
4	Functions	1.	display the details from the function.
-		1.	Write a C program to add, subtract, multiply and divide two integers using a user-defined type function
			with return type.
		2.	Write a C program to calculate sum of first 20 natural
		2	numbers using recursive function.
		3.	Write a C program to generate Fibonacci series using recursive function.
		4.	Write a C program to swap two integers using call by
			value and call by reference methods of passing
		_	arguments to a function.
		5.	Write a C program to find sum of digits of the number
		6.	using Recursive Function. Write a C program to read an integer number and print
		0.	the reverse of that number using recursion.
		7.	Write a C program to find maximum and minimum
			between two numbers using functions.
		8.	Write a C program to check whether a number is even
		٥	or odd using functions. Write a C program to check whether a number is
		9.	Write a C program to check whether a number is

		prime, Armstrong or perfect number using functions.
		10. Write a C program to find power of any number using
_		recursion.
5	Pointers	1. Write a C program to find the sum of all the
		elements of an array using pointers.
		2. Write a C program to swap value of two variables using
		pointer.
		3. Write a C program to add two numbers using pointers.
		4. Write a C program to input and print array elements using
		pointer.
		5. Write a C program to copy one array to another using
		pointer.
		6. Write a C program to swap two arrays using pointers.
		7. Write a C program to reverse an array using pointers.
		8. Write a C program to search for an element in array using
		pointers.
		9. Write a C program to add two 2 X 2 matrix using pointers.
		10. Write a C program to multiply two 2 X 2 matrix using
		pointers.
		11. Write a C program to find length of string using pointers.
		12. Write a C program to copy one string to another using
		pointer.
		13. Write a C program to concatenate two strings using
		pointers.
		14. Write a C program to compare two strings using pointers.
		15. Write a C program to find a substring from a given string
		using pointers.
6	File handling	1. Write a C Program to list all files and sub-directories in a
Ŭ	i ne nunuing	directory.
		 Write a C Program to count number of lines in a file.
		 Write a C Program to print contents of file.
		 Write a C Program to copy contents of one file to another Write a C Program to copy contents of one file to another
		file.
		5. Write a C Program to merge contents of two files into a
		third file.
		6. Write a C program to delete a file.

Course Code: MCA104

Lecture Hours: 40

Name of the Cours	se: Discrete Mathematica	l Structure				
Course Code: MC	A104	Semester: 1st				
Duration: 40 Hrs.		Maximum Marks: 100				
Teaching Scheme		Examination Scheme				
Theory: 3		End Semester Exam: 100				
Tutorial: 1		Continuous Assessment: 100				
Credit: 3						
Aim:						
Sl. No.						
1	To provide a strong four for computing application	ndation in discrete mathematical structures essential ons.				
2	To develop analytical an computer science.	d logical reasoning skills for problem-solving in				
3	To enable students to ap graph theory, and autom	ply mathematical concepts in areas like algorithms, ata theory.				
Objective:						
Sl. No.						
1	To understand and apply fundamental concepts of set theory, relations, and functions in computing.					
2	To develop proficiency i relations for algorithm d	in mathematical logic, combinatorics, and recurrence esign.				
3	To explore graph theory optimization algorithms	and its applications in networks, trees, and				
4	To introduce automata the computation models.	heory, grammars, and fuzzy logic for theoretical				
Pre-Requisite:						
Sl. No.						
1.	Basic knowledge of m	athematics, including algebra and logic.				
Course Outcome:						
1.	Apply set theory, relation computing problems.	s, and functions to model real-world				
2.	Analyze and solve proble techniques, and recurrence	ms using mathematical logic, combinatorial e relations.				
3.	Utilize graph theory concepts and algorithms for solving computational and network-related problems.					
4.		e automata, grammars, and fuzzy logic systems				

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	2	1	0	0	1	1	1	2	3	2	2
CO2	3	3	2	2	2	1	0	1	1	1	1	2	2	3	2
CO3	3	3	3	2	3	2	1	1	1	1	2	2	3	2	2
CO4	3	2	3	1	3	1	0	1	1	1	2	2	3	2	3

Module	Торіс	Sub-topics
number		
1	Foundations of	Set Theory: Foundations, Mapping (Bijective, Surjective,
	Discrete	Injective)
	Mathematics	Relations: Equivalence Relations, Posets, Lattices
2	Mathematical	Mathematical Induction
	Logic and	Propositional Logic, Logical Equivalence
	Combinatorics	Permutations and Combinations
3	Linear Data	Generating Functions
	Structure-Linked	Recurrence Relations
	List	
4	Graph Theory and	Concepts of Graph Theory: Sub-graphs, Cyclic Graphs
	Its Applications	Trees, Spanning Trees, Binary Trees
		Graph Algorithms: Kruskal's, Prim's, Dijkstra's, Floyd-
		Warshall's, DFS, BFS
		Graph Isomorphism and Homomorphism
5	Automata Theory	Finite Automata: Construction & Conversion of NFA, DFA,
	and Fuzzy Systems	State Minimization
		Mealy & Moore Machines
		Grammars: Type 0, 1, 2, 3
		Fuzzy Sets: Basic Properties

Books:

- 1. Theory of Computer Science, Mishra & Chandrasekharan, PHI
- 2. Discrete Mathematics for Comp. Scientists & Mathematicians, Mott, Kandel & Baker, PHI
- 3. Discrete Mathematical Structure, C.L.Liu, TMH
- 4. Discrete Mathematical Structure, G.S.RAO, New Age International
- 5. Discrete Mathematics With Applications, Rosen, TMH, 5th Ed
- 6. Discrete Mathematics, Ash & Ash, MH.
- 7. Discrete Mathematical Structure, Somasundaram, PHI
- 8. Discrete Mathematical Structure, Dubey, EXCEL BOOKS
- 9. Discrete Mathematics, Iyenger, VIKAS
- 10. Discrete Structure and Graph Theory, Bhisma Rao, Scitech

Course Name: Business English and Communication Credit: 3

Course Code: MCA105

Lecture Hours: 33

Name of the Course: Business English and Communication					
Course Code: MCA	105	Semester: 1st			
Duration: 33 Hrs. Maximum Marks: 100					
Teaching Scheme	Examination Scheme				
Theory: 3		End Semester Exam: 100			
Tutorial: 1		Continuous Assessment: 100			
Credit: 3					
Aim:					
Sl. No.					
1	Making the students ind	ustry-ready.			
2		evant in the contemporary society.			
3		pared to analyze and solve problems through			
Objective:					
Sl. No.					
1	To develop effective bus	siness writing and communication skills.			
2		nication and presentation abilities among students.			
3	To help students learn to reports.	o prepare various business documents and technical			
4		d reading comprehension.			
Pre-Requisite:					
Sl. No.					
1.	ncy, Listening and Speaking Skills, Reading and nic and Social Contexts, and Familiarity with				
Course Outcome:					
1.	Achieve competence in g fundamentals.	rammar, syntax, and vocabulary			
2.	Effectively communicate	in academic and social contexts.			
3.	Develop readiness for the	e industry and understand corporate ethics.			
4.	•	y in English encompassing reading, listening,			

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	2	-	2	-	1	2	3	-	3	3	-	-
CO2	3	3	-	2	-	3	1	2	3	3	-	3	3	-	-
CO3	2	3	-	2	-	3	1	3	2	3	-	3	3	-	-
CO4	3	3	-	2	-	2	-	2	2	3	-	3	3	-	-

Module number	Торіс	Sub-topics
1	Introduction to	- Importance of effective communication in business.
	Business	- Types of business communication: Internal and External.
	Communication.	- Communication process and barriers.
		- Strategies for effective communication.
		- Traditional and digital communication channels.
		- Effective use of email, memos, and business letters.
		- Communication through social media and professional
		networks.
2	Writing Skills	- Formats and styles of business letters.
	Development	- Writing formal and informal business letters.
		- Common types of business letters: Inquiry, Complaint,
		Application, and Appreciation.
		- Structure of technical reports.
		- Writing abstracts, executive summaries, and conclusions.
		- Incorporating visuals and data in reports.
3	Oral	- Preparing and delivering business presentations.
	Communication	- Using multimedia in presentations.
	Skills	- Techniques for effective public speaking.
		- Prepared speech exercises.
		- Extempore speech practice.
		- Role-playing business scenarios.
4	Listening and	- Importance of active listening in business.
	Reading Skills	- Techniques for improving listening skills.
		- Listening comprehension exercises.
		- Developing reading comprehension.
		- Strategies for effective reading.
		- Comprehension tests and exercises.
5	Practical	- Principles of organizing written material.
	Communication	- Structuring content for clarity and impact.
	Applications	- Editing and proofreading techniques
		- Designing effective posters for business presentations.
		- Visual and textual balance.
		- Presenting posters in professional settings.
6	Practical	- Interactive sessions on negotiation and persuasion.
	Communication	- Group discussions and teamwork exercises
	Skill Development	

List of Books Text Bo	List of Books Text Books:					
Name of Author	Title of the Book	Edition/ISSN/ ISBN	Name of the Publisher			
R C Sharma and Krishna Mohan	Business Correspondence & Report Writing	ISBN 978- 9385965050 (5 th ed)	McGraw Hill Education			
Reference Books:						
Matthukutty Monippally	Business Communication Strategies		McGraw Hill Education			
K.R. Lakshminarayanan	English for Technical Communication	Volume 1 & 2 Combined Edition	SCITECH PUBLICATIONS (INDIA) PVT LTD			
Asha Kaul	Business Communication	Second Edition	PHI Learning			
Dr. Anjali Ghanekar	Communication Skills for Effective Management		Everest Publishing House			

Course Name: Essential Studies for Professionals–I

Course Code: IVC(MC)101

Lecture Hours: 20

Credit: 0

Name of the Course: Essential Studies for Professionals-I						
Course Code: IVC	C(MC)101	Semester: 1st				
Duration: 48 Hrs.		Maximum Marks: 100				
Teaching Scheme	Teaching Scheme Examination Scheme					
Theory: 2		End Semester Exam: 100				
Tutorial: 0		Continuous Assessment: 100				
Credit: 0						
Aim:						
1	To enhance quantitative solving in professional e	aptitude and logical reasoning for effective problem- nvironments.				
2	To develop oral, listenin interactions.	g, and reading communication skills for workplace				
3	To equip students with p correspondence and pres	practical communication skills, including professional sentations.				
Objective:						
1	To strengthen quantitativ making.	ve and logical reasoning for analytical decision-				
2	To improve verbal and r articulation and clarity.	non-verbal communication skills, including				
3	To enhance listening an processing.	d reading comprehension for better information				
4	· · ·	nmunication techniques, such as presentations, a, and public speaking.				
Pre-Requisite:						
1.	Basic understanding of I concepts.	English language and fundamental mathematical				
Course Outcome:						
1.	Apply quantitative aptit professional scenarios.	ude and logical reasoning skills in				
2.		ral and written communication for workplace				
3.		and reading comprehension for better onse.				
4.		nmunication strategies, including professional				

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	1	0	0	1	2	1	3	2	3	2
CO2	2	1	1	0	1	1	0	0	1	3	1	2	1	1	1
CO3	2	2	1	0	1	1	0	0	1	3	1	2	1	1	1
CO4	2	1	1	0	1	1	0	0	1	3	1	2	1	1	1

Module number	Торіс	Sub-topics
1	Quantitative	A. Quant Foundation 1. Number System(Chapter 1)
	Aptitude	2. HCF and LCM
		(Chapter 2)
		3. Decimal Fractions
		(Chapter 3)
		4. Simplification
		(Chapter 4)
		5. Square roots and cube roots (Chapter 5)
		6. Percentage
		(Chapter 11)- Basic concept of percentage & its shortcut
		rules & their applications.
		7. Ratio and Proportion (Chapter 13)- Basic concept of
		Ratio & Proportion, Shortcut tricks & their applications.
		8. Partnership
		(Chapter 14) concept, rules & Applications, Percentage
		Advanced problems & shortcuts.
		Profit & Loss (Chapter 12)- Basic concept, formulae, shortcut
		tricks & their application.
2	Logical	1. Coding and Decoding (Chapter 4)
	Reasoning	i. Conditional Coding,
		ii. Word-Pattern Coding,
		iii. Chinese Coding, 2 Direction Source Test (Chapter 8)
		2. Direction Sense Test (Chapter 8)i. Direction Sense Test,
		ii. Direction Distance Test,
		iii. Shadow based Questions.
		_
		3. Series Completion (Chapter 1)
		i. Alphabet Series,
		ii. Random Series,
		iii. Number Series,
		iv. Letter Gap, Missing Number Series
		v. Missing Number Series,
		vi. Series Completion
		4. Blood Relations (Chapter 5)

		i. Family Tree Questions
		ii. Indication Type BR,
		iii. Coding Blood Relations,
		iv. Miscellaneous
		Blood Relations
3	Oral	- Preparing and delivering business presentations.
	Communication	- Using multimedia in presentations.
	Skills	- Techniques for effective public speaking.
		- Prepared speech exercises.
		- Extempore speech practice.
		- Role-playing business scenarios.
4	Listening and	- Importance of active listening in business.
	Reading Skills	- Techniques for improving listening skills.
		- Listening comprehension exercises.
		- Developing reading comprehension.
		- Strategies for effective reading.
		- Comprehension tests and exercises.
5	Practical	- Principles of organizing written material.
	Communication	- Structuring content for clarity and impact.
	Applications	- Editing and proofreading techniques
		- Designing effective posters for business presentations.
		- Visual and textual balance.
		- Presenting posters in professional settings.
6	Practical	- Interactive sessions on negotiation and persuasion.
	Communication	- Group discussions and teamwork exercises
	Skill Development	-

List of Books Text Books:					
Name of Author	Title of the Book	Edition/ISSN/ISBN	Name of the Publisher		
R C Sharma and	Business Correspondence	ISBN 978-	McGraw Hill		
Krishna Mohan	& Report Writing	9385965050 (5 th ed)	Education		
Reference Books:					
Matthukutty	Business Communication	ISBN 978-	McGraw Hill		
Monippally	Strategies	0070435773	Education		
K.R.	English for Technical	Volume 1 & 2	Scitech Publications		
Lakshminarayanan	Communication	Combined Ed.	(India) Pvt Ltd		
Asha Kaul	Business Communication	Second Edition	PHI Learning		
Dr. Anjali Ghanekar	Communication Skills for	ISBN 978-	Everest Publishing		
-	Effective Management	8186314500 (19 th ed)	House		

Name of the Cou	rse: Competitive Apti	tude Training – I				
Course Code: IV	C(MC)181	Semester: 1st				
Duration: 20 Hrs	•	Maximum Marks: 100				
Teaching Scheme	2	Examination Scheme				
Theory: 2		End Semester Exam: 100				
Tutorial: 0		Continuous Assessment: 100				
Credit: 0						
Aim:						
1	*	reasoning, analytical thinking, and problem-solving skills etitive exams and job recruitment.				
2		h language proficiency, focusing on grammar, d professional communication.				
3		in data interpretation, improving the ability to analyze and problems efficiently.				
Objective:						
1	To strengthen Eng competitive aptitu	lish grammar, vocabulary, and comprehension skills for de tests.				
2	To develop logical solving techniques	l and analytical reasoning through structured problem- s.				
3	To enhance profic graphical analysis	iency in data interpretation, including tabular and				
4	To improve forma professional settin	l communication skills, such as official letter writing, for gs.				
Pre-Requisite:	I					
1.	Basic understand reasoning.	ing of English grammar and elementary mathematical				
Course Outcome	•					
1.		ciency in verbal English, including grammar, eading comprehension.				
2.	Apply logical reas exam scenarios.	coning and problem-solving techniques in competitive				
3.	Analyze and interpret data from tables, graphs, and charts for decisi making.					
4.	Develop effective writing.	written communication skills, including official letter				

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	0	1	1	0	0	1	3	1	2	1	1	1
CO2	3	3	2	2	2	1	0	0	1	2	1	3	2	3	2
CO3	3	3	2	2	2	2	1	0	1	2	1	3	2	3	2
CO4	2	1	1	0	1	1	0	0	1	3	1	2	1	1	1

Module number	Торіс	Sub-topics						
1	Verbal English-1:	 Introduction of Parts of speech: Introduction, Brief discussion of Parts of speech What are nouns, Kinds of Nouns, Rules & Applications. Definition of Pronoun, Examples, Rules & Application Definition of Subject Verb Agreement, Rules and Examples. Basic Application of Vocabulary (Synonyms and Antonyms) Reading Comprehension. Official Letter Writing 						
		Parts of Speech						
		 Identify Parts of Speech: Provide a paragraph andask students to identify and label each word's partof speech (noun, verb, adjective, adverb, pronoun, preposition, conjunction, interjection). Parts of Speech Matching: Create a list of words and a list of parts of speech. Ask students to matcheach word to the correct part of speech. Parts of Speech Sentences: Ask students to write sentences using specific parts of speech (e.g., writea sentence with at least one noun, one verb, one adjective, and one adverb). 						
		Nouns						
		 Noun Identification: Provide a list of sentences and ask students to underline or highlight the nouns. 						
		 2. Types of Nouns: Provide examples of common, proper, abstract, and collective nouns. Ask students to classify given nouns into thesecategories. 						
		 3. Noun Plurals: Give a list of singular nouns and ask students to write their plural forms. 						

33

	Pronouns
	1. Pronoun Replacement:
	• Provide sentences with nouns and ask students to
	replace the nouns withappropriate pronouns.2. Pronoun Agreement:
	C
	 Create sentences withpronouns and ask studentsto correct any errors inpronoun- antecedent agreement.
	3. Types of Pronouns:
	3. Types of Fronouns. Provide a list of pronounsand ask students to classify them intocategories (personal, possessive, reflexive, demonstrative, interrogative, relative, indefinite).
	Synonyms
	1. Synonym Matching:
	 Provide a list of words and a list of synonyms. Ask students to match each word with its synonym.
	2. Synonym Sentences:
	 Give sentences with underlined words and ask students to rewrite thesentences using synonyms for the underlined words.
	3. Synonym Stories:
	 Ask students to write a short story using a list of provided words and their synonyms.
	Antonyms
	1. Antonym Matching:
	• Provide a list of words and a list of antonyms. Ask students to match each word with its antonym.
	2. Antonym Sentences:
	• Give sentences with underlined words and ask students to rewrite thesentences using antonyms for the underlined words.
	3. Antonym Pairs:
	Ask students to create a list of ten words and write their antonyms
2 Data	next tothem. Calculating Totals and Averages:
2 Data Interpretation level-I	Provide a table with sales data over several months. Ask students to calculate the total sales and average sales for each month.
	Comparing Data:
	Provide a table with data on two or more products or categories. Ask students to compare the data and determine which product/category performed better based on different criteria (e.g., sales, growth rate).

Syllabus for MCA Admission Batch 2021, 2nd Semester

Course Name: Database Management Systems

Credit: 4

Course Code: MCA201

Lecture Hours: 40

Name of the Course:	Database Management S	Systems				
Course Code: MCA2	01	Semester: 2nd				
Duration: 40 Hrs.		Maximum Marks: 100				
Teaching Scheme		Examination Scheme				
Theory: 3		End Semester Exam: 70				
Tutorial: 1		Continuous Assessment: 30				
Credit: 4						
Aim:	1					
1.	To gain Knowledge of te	echnology used to manage data from a database				
2.	To enhance Ability to id knowledge and Knowledge	entify Data into information, Information into lge to the action				
3.	To gain Understanding of ORACLE software					
Objective:						
1.	This course introduces the design and implementation	ne core principles and techniques required in the on of database systems.				
2.		ational database management systems, including E-R modeling, data definition and manipulation wity and administration.				
3.	It covers essential DBM Concurrency Control and	S concepts such as: Transaction Processing, d Recovery				
4.		theoretical knowledge and practical skills in the use a management systems in information technology				
Pre-Requisite:						
1.	Concepts of computer proceeds.	rogramming (like programming in CFiles				
Course Outcome:	Ι					
1.	Understand the basic co systems.	ncepts and the applications of database				
2.	Master the basics of SQ	L and construct queries using SQL.				
3.	Understand the relationa	al database design principles.				
4.	Familiar with the basic concurrency control.	issues of transaction processing and				

CO s	PO 1	РО 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO 1	3	2	2	1	1	1	0	0	0	1	0	2	2	3	1
CO 2	3	3	2	2	3	1	0	0	0	1	0	2	3	3	1
CO 3	3	3	3	1	3	1	0	0	0	1	0	2	3	3	1
CO 4	3	3	3	2	3	1	0	0	0	1	0	2	3	3	1

Module number	Торіс	Sub-topics
1	Introduction: Database System Applications	Database System Applications, Purpose of Database Systems, View of Data, DatabaseLanguages – DDL, DML, Relational Databases, Database Design, Data Storage and Querying, Transaction Management, Database Architecture, Data Mining and Information Retrieval, Specialty Databases, Database Users and Administrators, History of Database Systems. Introduction to Data base design: Database Design andER diagrams, Entities, Attributes and Entitysets, Relationships and Relationship sets, Additional features of ER Model, Conceptual Design with the ER Model, Conceptual Design for Large enterprises.
	Relational Model	Introduction to the Relational Model, Integrity Constraints over Relations, Enforcing Integrity constraints, Querying relational data, Logical data base Design: ER to Relational, Introduction to Views, Destroying /Altering Tables and Views.
2	Relational Algebraand Calculus	Preliminaries, Relational Algebra, Relational calculus – Tuple relational Calculus, Domain relational calculus, Expressive Power of Algebra and calculus. SQL: Queries, Constraints, Triggers: Formof Basic SQL Query, UNION,INTERSECT, and EXCEPT, Nested Queries, Aggregate Operators,NULL values Complex Integrity All JNTUWorld Constraints in SQL, Triggers and Active Data bases, Designing ActiveDatabases.
3	Schema Refinement and Normal Forms	Introduction to Schema Refinement, Functional Dependencies - Reasoning about FDs, Normal Forms, Properties of Decompositions, Normalization, Schema Refinement in Database Design, Other Kinds of Dependencies.
4	Transaction Management	Transactions, Transaction Concept, A Simple Transaction Model, Storage Structure, Transaction Atomicity and Durability, Transaction Isolation, Serializability, Transaction

	Concurrency Control	Isolation and Atomicity Transaction Isolation Levels, Implementation of Isolation Levels. Lock–Based Protocols, Multiple Granularity, Timestamp- Based Protocols, Validation-Based Protocols, Multiversion Schemes. Recovery System-Failure Classification, Storage, Recovery and Atomicity, Recovery Algorithm, Buffer Management, Failure with loss of nonvolatile storage, Early Lock Releaseand Logical Undo Operations, Remote
		Backup systems.
5	Storage and Indexing	Overview of Storage and Indexing: Data on External Storage, File Organization and Indexing, Index Data Structures, Comparison of File Organizations. Tree- Structured Indexing: Intuition for tree Indexes, Indexed Sequential Access Method (ISAM)
	B+ Trees	A Dynamic Index Structure, Search, Insert, Delete. Hash-Based Indexing: StaticHashing, Extendible hashing, LinearHashing, Extendible vs. Linear Hashing.

List of Books Text Books:			
Name of	Title of the Book	Edition/ ISSN/	Name of the
Author		ISBN	Publisher
Abraham Silberschatz, Henry	Database System Concepts	Seventh Edition	McGraw-Hill
F.Korth, et al.			
Reference Books:			
Raghu	Database Management Systems	ISE	McGraw-Hill
Ramakrishnan and Johannes			
Gehrke			

Name of the Course	e: Database	Management System Laboratory				
Course Code: MCA	291	Semester: 2nd				
Duration: 12 Week	S.	Maximum Marks: 100				
Teaching Scheme		Examination Scheme				
Practical: 3		Practical Sessional Internal continuous evaluation: 100				
Credit: 3		Practical Sessional external examination: 100				
Aim:	1					
1.	To gain Kn	owledge of technology used to manage data from a database				
2.		Ability to identify Data into information, Information into and Knowledge to the action				
3.	To gain Understanding of ORACLE software					
Objective:						
1.	This course introduces the core principles and techniques required in the design and implementation of database systems.					
2.	database de	focus on relational database management systems, including sign theory: E-R modeling, data definition and manipulation database security and administration.				
3.		ential DBMS concepts such as: Transaction Processing, Control and Recovery				
4.		students with theoretical knowledge and practical skills in the use s and database management systems in information technology s.				
Pre-Requisite:						
1.	Concepts of	f computer programming (like programming in C -Files concepts).				
Course Outcome:	1					
1.	Understand t systems.	he basic concepts and the applications of database				
2.	Master the ba	asics of SQL and construct queries using SQL.				
3.	Understand t	he relational database design principles.				
4.	Familiar witl control.	n the basic issues of transaction processing and concurrency				

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	1	1	0	0	0	1	0	2	2	3	1
CO2	3	3	2	2	3	1	0	0	0	1	0	2	3	3	1
CO3	3	3	3	1	3	1	0	0	0	1	0	2	3	3	1
CO4	3	3	3	2	3	1	0	0	0	1	0	2	3	3	1

Module number	Торіс	Sub-topics
1	Introduction:	Annexure – I (SQLQuery based Lab – Assignments)
	Database System	
	Applications	Assignment – 1: Design E-R Diagrams for Different casestudies
	Relational	Assignment – 2:
	Model	Case Studies usingbasic SQL RelationalAlgebra Operations
2	Relational	Assignment – 3: Case Studies usingbasic
	Algebraand	SQL Relational Algebra Operations
	Calculus	
3	Schema	Assignment - 4: SQL based assignment on different normal
	Refinement and	forms.
	Normal Forms	
4	Transaction	Assignment – 5:
	Management	
		SQL-based assignment on Transaction Management
	Concurrency	Assignment - 6: SQL-based assignment on Transaction
	Control	Management
5	Storage and	Assignment – 6:
	Indexing	Implement B+ tree in Python
	B+ Trees	

Annexure – I (SQL based Lab – Assignments)

Assignment – 1:

Consider the following relational schema for the Office of the Controller of Examinations Application. Student (Rollno, Name, Dob, Gender, Doa, Bcode); Implement a check constraint for Gender Date of Admission Branch (Bcode, Bname, Dno); Department (Dno, Dname); Course (Ccode, Cname, Credits, Dno); Branch_Course (Bcode, Ccode, Semester); Enrolls (Rollno, Ccode, Sess, Grade); For Example,

SESS can take values 'APRIL 2013', 'NOV 2013'

Implement a check constraint for grade Value Set ('S', 'A', 'B', 'C', 'D', 'E', 'U');

Students are admitted to Branches and they are offered by Departments. A branch is offered by only one department.

Each branch has a set of Courses (Subjects). Each student must enroll during a semester. Courses are offered by Departments. A course is offered only by one department. If a student is unsuccessful in a course he/she must enroll for the course during next session. A student has successfully completed a course if the grade obtained by is from the list (A, B, C, D, and E). A student is unsuccessful if he/she have grade 'U' in a course. Primary Keys are underlined. Questions

These are questions for assignment 1

Question (A): Develop a SQL query to list details of Departments that offer more than 3 branches.

Question (B): Develop a SQL query to list the details of Departments that offer more than 6 courses.

Question (C): Develop a SQL query to list the details of courses that are common for more than 3 branches.

Question (D): Develop a SQL query to list students who got 'S' in more than 2 courses during single enrollment.

Question (E): Create a view that will keep track of the roll number, name and number of courses, a student has completed successfully.

Assignment – 2:

Consider the following relations for an Order Processing Database application in a Company. Customer (Customerno varchar2 (5), Cname varchar2 (50)); Implement check constraints to check Customerno starts with 'C'.

Cust_Order (Orderno varchar2(5), Odate Date, Customerno references Customer, Ord_amt number(8)); Implement check constraints to check Orderno starts with 'O'.

Ord_amt is derived attribute (default value is 0);

Item (Itemno varchar2 (5), Item_name varchar2 (30), unit_price number (5)); Implement check constraint to check Itemno starts with 'I'.

Order_item (Orderno references Cust_order, Itemno references item, qty number (3)); Primary Key is underlined. Questions

These are questions for assignment 2. The solution is available after the last question. Question (A): Develop DDL to implement above schema enforcing primary key, check constraints and foreign key constraints.

Question (B): Populate Database with rich data set.

Question (C): Develop SQL query to list the details of customers who have placed more than 3 orders.

Question (D): Develop a SQL query to list details of items whose price is less than the average price of all items in each order.

Question (E): Develop a SQL query to list the orderno and number of items in each order. Question (F): Develop a SQL query to list the details of items that are present in 25% of the orders.

Question (G): Develop an update statement to update the value of Ord_amt.

Question (H): Create a view that keeps track of detail of each customer and number of Order placed.

Assignment – 3:

Q3: Consider the following relational schema

Staff (Staffno number (5), Name varchar2 (30), Dob Date, Gender Char (2), Doj Date, Designation varchar2 (30), Basic_pay number (6), Deptno varchar2 (5));

Gender must take value 'M' or 'F'.

Dept (Deptno varchar2 (5), Name varchar2 (30));

Skill (Skill_code varchar2 (5), Description varchar2 (30), Charge_Outrage number (3)); Staff_skill (Staffno number (5), Skill_code varchar2 (5));

Project (Projectno varchar2 (5), Pname varchar2 (5), Start_Date Date, End_Date Date,

Project_Manager_Staffno number (5)); Project Number must start with 'P'.

Works (Staffno number (5), Projectno varchar2 (5), Date_Worked_On Date, Intime Timestamp, Outtime Timestamp);

Primary Key is underlined. Questions

These are questions for assignment 3. The solution is available after the last question.

Question (A): Develop DDL to implement the above schema specifying appropriate data types for each attributes and enforcing primary key, check constraints and foreign key constraints. Question (B): Populate the database with rich data set.

Question (C): Develop a SQL query to list the departmentno and number of staff in each department,

Question (D): Develop a SQL query to list the details of staff who earn the AVG basic pay of all staff.

Question (E): Develop a SQL query to list the details of staff who have more than 3 skills. Question (F): Develop a SQL query to list the details of staff who have skills with a charge outrate greater than 60 per hour.

Question (G): Create a view that will keep track of the department number, department name, the number of employees in the department and total basic pay expenditure for the department. Question (H): Develop a SQL query to list the details of Depts which has more than 5 staff working in it.

Question (I): Develop a SQL query to list the details of staff who have more than 3 skills.

Assignment – 4:

Consider the following relational schema for a banking database application. Customer (Cid, Cname);

Branch (Bcode, Bname);

Account (Ano, Atype, Balance, Cid, Bcode);

An account can be a saving account or a current account. Check Atype in 'S' or 'C'. A customer can have both types of accounts. Transaction (Tid, Ano, Tttype, Tdate, Tamount); Ttype can be 'D' or 'W'.

D - Deposit, W - Withdrawal Primary Key is underlined. Questions

These are questions for assignment 4. The solution is available after the last question.

Question (A): Develop DDL to implement the above schema specifying an appropriate data type for each attribute enforcing primary key, check constraints and foreign key constraints. Question (B): Populate the database with a rich data set.

Question (C): Develop a SQL query to list the details of customers who have a saving account and a current account.

Question (D): Develop a SQL query to list the details of branches and the number of accounts in each branch.

Question (E): Develop a SQL query to list the details of branches where the number of accounts is less than the average number of accounts in all branches.

Question (F): Develop a SQL query to list the details of customers who have performed three transaction on a day.

Question (G): Create a view that will keep track of branch details and the number of accounts in each branch.

Assignment – 5 :

Let us consider the following database schema. As you can see in below figure, there are four tables (Existing Database)

- Projects, Employees, ProjectEmployees, and JobOrders. Recently, the Customers table has also been added to the database to store the customers' information. As you can see in the

	Projects		
6	8 ID		Existing Database
63	Name		
	Value		
	StartDate		
	EndDate		
			Customers
	L	\$ \$	Name
			Industry
JobOrders			Project1_ID
8 ID	a		project1_feedback
EmployeeID		8	project2_id
ProjectID		ProjectEmployees	project2_feedback
Description		ID ID	contact_person_id
OrderDateTir	me	ProjectID	contact_person_and_role
Quantity		EmployeeID	phone_number
Price		Hours	address
	^	8	city
	8	Ĩ	zip
	<u>¥</u>	Ŷ	
	Employees		
	9 ID		
	FirstName		
	LastName		
	HourlyWage		
	HireDate		New Table Added

diagram below, the Customers table has not been designed in a proper way to support the normal forms, let's go ahead and fix it.

The Customers table in the diagram violates all the three rules of the first normal form. We do not see any Primary Key in the table.

The data is not found in its most reduced form. For example, the column ContactPersonAndRole can be divided further into two individual columns - ContactPerson and ContactPersonRole.

Also, we can see there are two repeating groups of columns in this table - (Project1_ID, Project1_FeedBack) and (Project2_ID, Project2_Feedback). We need to get these removed from this table.

Name	Industry	Project1_ID	Project1_Feedback	Project2_ID	Project2_Feedback	ContactPersonID	ContactPersonAndRole	PhoneNumber	Address	City	Zip
Zydus Cadilla	Pharma	2455	Amazing Work!			133	Dave, HoD	555-55-5555	1, Landing Street	York	23456
HDFC	Finance	9855	Nice job!	4924	Fantastic!	146	Mark, Ops Lead	222-22-2222	2, Times Square	London	86421
ICICI	Finance	3965	Well done.			122	Peter, Analyst	444-44-4444	3, Garden Street	Brussels	53864

The diagram below shows dummy data stored in the Customers table.

- a. Add a primary key to this table. For this, add a new column *ID* with datatype as *INT* and also assign it as an *Identity* column.
- b. split the column ContactPersonAndRole into two individual columns. This can be done in two steps as follows:
 - i. Rename the original column from ContactPersonAndRole to ContactPerson.
 - ii. Add a new column for ContactPersonRole.
- c. Finally, in order to satisfy the third rule of the First Normal Form, move the columns *Project1_ID*, *Project1_Feedback*, *Project2_ID*, and *Project2_Feedback* into a new table. This can be done by creating a new table *ProjectFeedbacks* and link it back with the *Customers* and the *Projects* table which remove the above-mentioned columns from the *Customers* table and create a new table *ProjectFeedbacks* with Foreign Key references to the *Customers* and *Projects* table.

The database schema after applying all the rules of the first normal form should be as below.

	Projects				ProjectFeedback	
	ID ID					
	Name				ProjectID	
	Value				CustomerID	
	StartDate	2			Feedback	
	EndDate					
					8	
		& &			Ĭ	
					•	
obOrders					Customers	
D		00]		Name	_
EmployeeID			8		Industry	
ProjectID		ProjectEmplo	oyees		ContactPersonID	
Description					ContactPerson	
OrderDateTime	2	ProjectID			PhoneNumber	
Quantity		EmployeeID Hours			Address	
Price		Hours			City	
	0				Zip	
	ŏ	ľ			ID ID	
					ContactPersonRole	
		V				
	Employees			1	I	
	FirstName					_
	LastName				1	
	HourlyWage				* *	
	HireDate				Altered Objects	
	nireDate				Allered Objects	

If you see the database schema diagram above, you can see that the *ContactPerson*, *ContactPersonRole* and the *PhoneNumber* do not directly relate to the *ID* of the *Customers* table. That is because the primary key refers to a customer and not to any person or role or the phone number of the contact person.

- 1. Remove all these columns from the *Customers* table which do not relate to the primary key of the table directly.
- 2. Once, the columns are removed from the *Customers* table, now create a new table that'll store the data for the contact persons. Let us create a new table *ContactPersons* and relate it to the *Customers* table with a foreign key relation

Assignment – 6:

Implement B+ tree using any Programming Language.

List of Minor Projects Based on SQL

- 1. Blood Donation Management System
- 2. Cooking Recipe Website
- 3. Library Database Management System
- 4. Online Retail Database Software
- 5. Inventory Management System
- 6. Voice Commands Transport Enquiry System
- 7. Carbon-Emission Calculator
- 8. Railway Control System Database
- 9. Student Database Management
- 10. Hospital Management System
- 11. Payroll Management System
- 12. Grocery Store Sales

Course Name: Object-Oriented Programming

Course Code: MCA202

Lecture Hours: 40

Name of the Cour	rse: Object-Oriented Progra	mming
Course Code: MC	CA202	Semester: 2nd
Duration: 40 Hrs.	•	Maximum Marks: 100
Teaching Scheme		Examination Scheme
Theory: 3		End Semester Exam: 70
Tutorial: 1		Continuous Assessment: 30
Credit: 4		
Aim:		
1.	To gain the knowledge of	of basic object-oriented programming techniques.
2.	Learning the underlying	concepts of Java Programming.
3.	Get industry ready with	the coding skills.
Objective:		
1.	To understand the basic object-oriented language	concepts and fundamentals of platform independent e.
2.	To demonstrate skills in techniques and multithree	writing programs using exception handling eading.
3.	To understand streams a	and efficient user interface design techniques.
4.	To understand the basic object-oriented language	concepts and fundamentals of platform independent e.
Pre-Requisite:		
1.	Basics of programming	language.
2.	Logic building skills.	
Course Outcome:		
1.		n idea of how to work with different data ional statements and iterative statements in
2.	Students should have ar different collection inter	n idea of how to work with strings, arrays, and rfaces.
3.		to use and design programs using their advanced eams, AWT, and GUI Programming using
4.		ork with object-oriented programming nake small projects based on them.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	1	1	0	0	0	1	0	2	2	3	1
CO2	3	3	2	2	3	1	0	0	0	1	0	2	3	3	1
CO3	3	3	3	1	3	1	0	0	0	1	0	2	3	3	1
CO4	3	3	3	2	3	1	0	0	0	1	0	2	3	3	1

Module number	Торіс	Sub-topics
	OOPs Concept	Object, Class, Data abstraction, Data encapsulation, Inheritance, Polymorphism, Dynamic binding
	An overview of Java	History of Java, Java features, JVM, Comparison between Java and C++, Idea of Java Development Kit (JDK), learn to run Java program through the command line.
	Data Concept	Data Types, Variables, Arrays and constants Tokens in Java (Identifiers, Literals, Keywords, Operator)
1	Control Statements	Simple if statement, if-else statement, Nesting of if-else statement, switch statement
	Iteration	for loop, while loop, do-while loop
	Statement	
	Classes and Objects	Creating main() in a separate class, Methods with parameters, Methods with a return type, Method overloading, Passing Objects as Parameters, Passing Values to methods and Constructor, Abstract classes
	String and String Buffer	Use of different functions
	Inheritance	Basic concepts, types of inheritance, use of super keyword, overriding methods.
2	Packages, Interfaces	User-defined package, standard packages, import package, Class path, how to create interface, use and extend interface
	Multithreaded Programming	Overview, Thread Life cycle, Advantages of multithreading over multitasking, Thread Creation, Synchronized threads, Synchronized Methods

	Exception Handling	Overview of exception, Compile time errors Run time errors, try- catch, use of multiple catch Blocks, finally block, throwing an exception, using the throw and throws statement.
3	Collections	Collections, Iteration, Set and SortedSet, List, Map and SortedMap, Legacy Collection Types
	Stream	Byte Streams, Input Stream, Output Stream Character Streams (Reader, Writer), How Files and Streams Work, Working with Reader classes (InputStreamReader, BufferedReader)
4	Applets	Applet vs. Application, Applet class, Advantages of Applet, Applet
	Abstract Window Toolkit	GUI Components, Interface and Classes of AWT Package, Swings, Labels, Buttons, Check Boxes, Radio button, Text Area, Text Field, Scrollbar, Panels, Layout managers, Simple event-driven programming with Text Field and Button

List of Books									
Text Books									
Name of Author	Title of the book	Edition/ ISSN/ ISBN	Name of the Publisher						
Herbert Schildt	Java: The Complete Reference	Eleventh Edition	McGraw-Hill						
Ken Arnold, David Holmes, James Gosling, Prakash Goteti	The Java Programming Language	Third Edition	Pearson Education						
E. Balagurusamy	Programming with Java	Fourth Edition	McGraw-Hill						
Reference Books:	-								
Core Java An Integrated Approach (Black Book)	Core Java An Integrated Approach (Black Book)	First Edition	Dreamtech Press						
Kogent Learning Solutions	Web Technologies, Black Book	First Edition	Dreamtech Press						
Paul Deitel, Harvey Deitel	Java How to Program: Early Objects	Eleventh Edition	Pearson Education						
Kathy Sierra, Bert Bates, Trisha Gee	Head First Java: A Brain- Friendly Guide	Third Edition	Shroff/O'Reilly						

Name of the Course	e: Object O	riented Programming with Java Laboratory		
Course Code: MCA	A292	Semester: 2nd		
Duration: 12 Week	s.	Maximum Marks: 100		
Teaching Scheme		Examination Scheme		
Practical: 3		Practical Sessional Internal continuous evaluation: 100		
Credit: 3		Practical Sessional external examination: 100		
Aim:	-			
1.	To gain the	knowledge of basic object-oriented programming techniques.		
2.	Learning th	e underlying concepts of Java Programming.		
3.	Get industry	y ready with the coding skills.		
Objective:				
1.		and the basic concepts and fundamentals of platform independent nted language.		
2.		trate skills in writing programs using exception handling and multithreading.		
3.	To understa	and streams and efficient user interface design techniques.		
4.		and the basic concepts and fundamentals of platform independent need language.		
Pre-Requisite:				
1.	Basics of pr	ogramming language.		
2.	Logic build	ing skills.		
Course Outcome:	1			
1.		ould have an idea of how to work with different datatypes, conditional statements and iterative statements in Java.		
2.	Students should have an idea of how to work with strings, arrays, and different collection interfaces.			
3.		nould be able to use and design programs using their advanced ures, I-O Streams, AWT, and GUI Programming using Applets s.		
4.		ill learn to work with object-oriented programming constructs in ake small projects based on them.		

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	1	1	0	0	0	1	0	2	2	3	1
CO2	3	3	2	2	3	1	0	0	0	1	0	2	3	3	1
CO3	3	3	3	1	3	1	0	0	0	1	0	2	3	3	1
CO4	3	3	3	2	3	1	0	0	0	1	0	2	3	3	1

Module number	Торіс	Sub-topics
	OOPs Concept	Annexure – I (Programming based Lab – Assignments)
	An overview of Java	Assignment – 1: Basic Programming and Command Line Arguments
	Data Concept	
1	Control Statements	Assignment – 2: Constructors & Inheritance
	Iteration Statement	for loop, while loop, do-while loop
	Classes and Objects	Assignment – 3: Flow Control
	String and String Buffer	Assignment – 4: Inheritance and Dynamic Polymorphism
_	Inheritance	
2	Packages, Interfaces	Assignment – 5: Abstract class & Interface in Java.
	Multithreaded Programming	Assignment – 6: Threads, Multithreading & Thread Synchronization
	Exception Handling	Assignment – 7: Exception Handling& Collections
3	Collections	
	Stream	Assignment – 8: Keyboard input and string handling in Java
4	Applets	
-	Abstract Window Toolkit	

Annexure – I (Programming Based Lab – Assignments)

Assignment – 1: Basic Programming and Command Line Arguments

- 1. Write a Java Program to print your Name entered through the command line as an argument.
- 2. Write a Java program to convert Temperature from Fahrenheit to Celsius and vice versa.
- 3. Write a Java program to add two numbers.
- 4. Write a Java Program to find the area and Perimeter of a rectangle.
- 5. Write a program in Java to find the maximum of three numbers.
- 6. Write a Java Program to check whether a given year is a leap year.
- 7. Create four different classes with three of them containing the function main.Save the file with a different name than that of the class name and run each of the classes with the main function.
- 8. Write a Java program to reverse a number entered as a command line argument.
- 9. Write a Java program to count the number of digits entered through the command line argument.
- 10. Write a Java program to find all the multiples of 3 within a given range where the starting and ending values are entered through a command line argument.

Assignment – 2: Constructors & Inheritance

- 1. Write a class, Grader, which has an instance variable, score, an appropriate constructor and appropriate methods. A method, lettergrade (), that returns the letter grade as O/E/A/B/C/F. Now write a demo class to test the Grader class by reading a score from the user, using it to create a Grader object after validating that the value is not negative and is not greater than 100. Finally, call the letterGrade() method to get and print the grade.
- 2. Write a class, Commission, which has an instance variable, sales; an appropriate constructor; and a method, commission() that returns the commission. Now write a demo class to test the Commissionclass by reading a sale from the user, using it to create aCommission object after validating that the value is not negative. Finally, call the commission() method to get and print the commission. If the sales are negative, your demo should print themessage "Invalid Input".
- 3. For a Mobile Shop project, create a "Telephone" class with details like mobile_id, model_name and available_quantity in "Phone" package. Inherit from this class and create a class for "smart_phone" with necessary information like enabled_5G, foldable anddual_screen in package "Smart". The customer executive tries to display all smart_phone details (mobile_id, model_name, available_quantity, enabled_5G, foldable and dual_screen) and updates the quantity information, whenever the customer purchases the smart_phone. Write the necessary java programs to implement this scenario and test with user inputs.
- 4. An educational institution maintains a database of its employees. The database is divided into a number of classes whose hierarchical relationships are shown below. Write all the classes and define the methods to create the database and retrieve individual information as and when needed. Write a driver program to test the classes. Stab (code, name), Teacher (subject, publication) is a Staff, Officer (grade) is a Staff, Typist (speed) is a Staff RegularTypist (remuneration) is a Typist, and CasualTypist (daily wages) is a Typist.

Assignment – 3: Flow Control

- The process of finding the largest value (i.e., the maximum of a group of values) is used frequently in computer applications. For example, a program that determines the winner of a sales contest would input the number of units sold by each salesperson. The salesperson who sells the most units wins the contest. Build a Java application that inputs a series of 10 integers and determines and prints the largest integer. Your program should use at least the following three variables:
 - a. counter: A counter to count to 10 (i.e. to keep track of how many numbers have been input and to determine when all 10 numbers have been processed).
 - b. number: The inter most recently input by the user.
 - c. largest: The largest number found so far.

Note: Every time the sales figure of one employee is entered, the application should ask the user if they want to enter any more sales figures of a salesperson!

- 2. Write an application that prompts the user to enter the size of the side of a square, and then displays a hollow square of that size made of asterisks. Your program should work for squares of all side lengths between 1 and 20.
- 3. Write a program to compute the following formula. $e= 1/0!+ 1/1! + \frac{1}{2}! + \frac{1}{3}! + \dots + 1/n!$
- 4. Using an enhanced for (for-each) loop, copy the content of one 3-dimensional array to another 3-dimensional array and display its contents.
- 5. Create the following vase pattern using a loop:

Assignment – 4: Inheritance and Dynamic Polymorphism

- 1. Create a general class ThreeDObject and derive the classes Box, Cube, Cylinder and Cone from it. The class ThreeDObject has methods wholeSurfaceArea() and volume(). Override these two methods in each of the derived classes to calculate the volume and whole surface area of each type of three-dimensional object. The dimensions of the objects are to be taken from the users and passed through the respective constructors of each derived class. Write a main method to test these classes.
- 2. Create a base class Building that stores the number of floors of a building, the number of rooms and its total footage. Create a derived class House that inherits the Building and also stores the number of bedrooms and bathrooms. Demonstrate the working of the classes.
- 3. In the earlier program, create a second derived class Office that inherits the Building and stores the number of telephones and tables. Now demonstrate the working of all three classes.
- 4. Create a base class Distance which stores the distance between two locations in miles and a method travelTime(). The method prints the time taken to cover the distance when the speed is 60 miles per hour. Now in a derived class DistanceMKS, override travelTime() so that it prints the time assuming the distance is in kilometres and the speed is 100 km per second. Demonstrate the working of the classes.
- 5. Create a base class called "vehicle" that stores the number of wheels and speed. Create the following derived classes –"car" that inherits "vehicle" and also stores the number of passengers.

"truck" that inherits "vehicle" and also stores the load limit.

Write a main function to create objects of these two derived classes and display all the information about "car" and "truck". Also, compare the speed of these two vehicles - car and truck and display which one is faster.

Assignment – 5: Abstract class & Interface in Java.

- 1. Design an abstract class having two methods. Create Rectangle and Triangle classes by inheriting the shape class and override the above methods to suitably implement for Rectangle and Triangle class.
- 2. Write a program to create a class named Vehicle having protected instance variables regnNumber, speed, colour, ownerName and a method showData() to show "This is a vehicle class". Inherit the Vehicle class into subclasses named Bus and Car having individual private instance variables route Number in Bus and manufacturer Name in Car and both of them having showData() method showing all details of Bus and Car respectively with the content of the super class's showData() method.
- 3. Create an interface Department containing attributes deptName and deptHead. It also has abstract methods for printing the attributes. Create a class hostel containing hostelName, hostelLocation and numberofRooms. The class contains methods for getting and printing the

attributes. Then write a Student class extending the Hostel class and implementing the Department interface. This class contains attributes studentName, regdNo, electiveSubject andavgMarks. Write suitable getData and printData methods for this class. Also, implement the abstract methods of the department interface. Write a driver class to test the Student class. The program will be menu driven containing the options:

- i) Admit new student
- ii) Migrate a student
- iii) Display details of a student

For the third option, a search is to be made on the basis of the entered registration number.4. Create an abstract class Accounts with the following details:

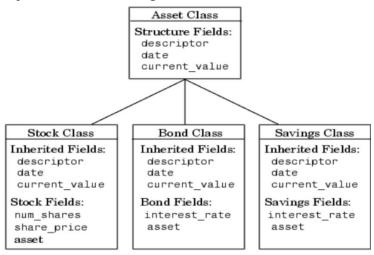
- Data Members:
 - (a) Balance
 - (b) accountNumber
 - (c) accountHoldersName
 - (d) address

Methods:

(a) withdrawl()- abstract

- (b) deposit()- abstract
- (c) display() to show the balance of the account number

Create a subclass of this class SavingsAccount and add the following details:


Data Members:

```
(a) rateOfInterest
```

Methods:

(a) calculateAount()

5. Implement the below Diagram.

Here, Asset class is an abstract class containing an abstract methoddisplayDetails() method. Stock, bond and Savings class inherit the Asset class and displayDetails() method is defined in every class.

Assignment – 6: Threads, Multithreading & Thread Synchronization

- 1. Write a Java program in which a total of 4 threads should run. Set different priorities for the thread.
- 2. Write a Java Program to Create a Thread that Implements the Runnable Interface.
- 3. Write a Java Program to Check the Priority Level of a Thread.

- 4. Write a Java Program Defining Thread by Extending the Thread class.
- 5. Write a Java Program to Get the Name of a Running Thread.
- 6. Write a Java Program to Stop a Thread.
- 7. Write a Java Program to Check Whether Define a Thread Class Without Defining run() Method in the Class.
- 8. Write a Java Program to Show that Method Will be Verified Whether it is Synchronized or Not.
- 9. Create 4 threads with priority 1,3,5,7 respectively. Update a counter in each of the threads for 10 ms. Print the final value of the count for each thread.
- 10. Write a Java Program to Use Method Level Synchronization.

Assignment – 7: Exception Handling& Collections

- 1. Write a Java program using try and catch to generate Array Index Out of Bound Exception and Arithmetic Exception.
- 2. Write a class that keeps a running total of all characters passed to it(one at a time) and throws an exception if it is passed a non-alphabetic character.
- 3. Write a program that takes a value at the command line for which the factorial is to be computed. The program must convert the string toits integer equivalent. Three possible user input errors can prevent the program from executing normally.
 - The first error occurs when the user provides no argument while executing the program, and an arrayIndexOutOfBoundsException is raised. You must write a catch block for this.
 - The second error is NumberFormatException which is raised in case the user provides a non-integer (float double) value at the command line.
 - The third error is IllegalArgumentException. This needs to be thrown manually if the value at the command line is 0.
- 4. Create a user-defined exception named CheckArgument to check the number of arguments passed through the command line. If the number of arguments is less than 5, throw the CheckArgumentexception, and print the addition of all the five numbers.
- 5. Write a Java program to create a custom Exception that would handle at least 2 kinds of Arithmetic Exceptions while calculating a given equation (e.g. X+Y*(P/Q) Z-I).
- 6. Given an element write a program to check if an element(value) exists in ArrayList.
- 7. Write a program to convert LinkedList to ArrayList.
- 8. Write a program to iterate TreeMap in java.

Assignment 8: Keyboard input and string handling in Java

- 1. Write a Java program for calculating Factorial. Number should be taken through user input (Using Scanner, BufferedReader both).
- 2. Write a Java program to reverse a string. (String will be taken as user input through the console).
- 3. Write a Java Program to Find the Length of the String.
- 4. Write a Java Program to Remove the White Spaces from a String.
- 5. Write a Java Program to Use the Equals Method In a String Class.
- 6. Write a Java Program to Count and Replace the First Occurrence of a String.
- 7. Write a Java Program to Validate an Email Address Format.
- 8. Write a Java Program to Access the Index of the Character or String.
- 9. Write a Java Program to Find First and Last Occurrence of a given character in a String.
- 10. Write a Java Program to Store String Literals Using String Buffer.

Course Name: Data Communication & Computer Networks Credit: 3

Course Code: MCA203

Lecture Hours: 40

Name of the Course	: Data Communication &	Computer Networks Credit				
Course Code: MCA	203	Semester: 2nd				
Duration: 40 Hrs. Maximum Marks: 100						
Teaching Scheme		Examination Scheme				
Theory: 3		End Semester Exam: 70				
Tutorial: 1		Continuous Assessment: 30				
Credit: 3						
Aim:						
1.	To gain Knowledge of u	ses and services of Computer Network				
2.	To enhance Ability to id	lentify types and topologies of network.				
3.	To gain Understanding of analog and digital transmission of data.					
Objective:						
1.	To deliver comprehensiv	ve view of Computer Network.				
2.	To enable the students to and topologies.	o understand the Network Architecture, Network type				
3.	To understand the desig	n issues and working of each layer of OSI model.				
4.	To familiarize with the b	penefits and issues regarding Network Security.				
Pre-Requisite:						
1.	Knowledge of basic data	a communication & network security.				
Course Outcome:						
1.	Identify the different components in a Communication System and their respective roles.					
2.	Describe the technical i	ssues related to the Networks				
3.	Defining the standard m	nodel and protocols of networking				
4.	Understand the basics o their importance.	f data communication, networking, internet and				

CO-PO-PSO Mapping

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	0	0	2	1	0	0	0	1	0	1	2	1	0
CO2	2	3	2	2	2	1	0	0	0	1	0	1	2	2	1
CO3	3	3	2	1	3	1	0	0	0	1	0	2	3	2	1
CO4	3	2	1	0	2	1	0	0	0	1	0	2	2	2	0

Module number	Торіс	Sub-topics
1	Introduction to Networks & Network Model	Introduction to communication systems, components, Transmission Impairments, and Performance criteria of a communication system. Goals of computer Network, network classification, Components and Topology, categories of network[LAN, MAN, WAN]; Internet: brief history, internet today; Protocols and standards; OSI and TCP/IP model
2	Physical Layer	Data, signal and Transmission: Analog and Digital, Transmission modes, Overview of data[analogue & digital], signal[analogue & digital], transmission [analogue & digital] & transmission media [guided & unguided]; Circuit switching: time division & space division switch, TDM bus; Telephone Network.
3	Data Link Layer	 Data link layer: Types of errors, framing [character and bit stuffing], error detection & correction methods; Flow control; Protocols: Stop & wait ARQ Medium access sublayer: Point-to-point protocol, FDDI, token bus, token ring; Reservation, polling, concentration; Multiple access protocols: ALOHA, CSMA, FDMA, TDMA, CDMA; Ethernet
4	Network Layer	Concepts of Internetworking & devices: Repeaters, Hubs, Bridges, Switches, Router, Gateway; Addressing: Internet address, classful address, Routing: techniques, static vs. dynamic routing Protocols: IP, IPV6.
5	Transport Layer	Process to process delivery; Details of UDP; Details of TCP; Congestion control algorithm: Leaky bucket algorithm, Tokenbucket algorithm, Quality of services [QoS]
6	Application Layer	Details of Application Layer protocols/services such as HTTP, FTP, Telnet, SMTP & WWW and other
7	Cryptography & Satellite Communication	Introduction to data security & cryptography (private key, public key, ISO standards), Digital Signature, Firewalls [technology & applications] Brief concepts of Satellite Communication such as LEO, GEO.

List of Books Text Books:							
Name of Author	Title of the Book	Edition/ ISSN/ ISBN	Name of the Publisher				
Behrouz A Forouzan	Data Communication & Networking	4 th Ed	ТМН				
Andrew S. Tannenbaum	Computer Networks	6 th Ed	PHI				

Reference Books:			
William Stallings	Data & Computer Communications	10 th Ed	PHI
Douglas E. Comer	Computer Networks and Internets with Internet Applications	4 th Ed	Pearson
Jean Warland	Communication Networks: A First Course	2 nd Ed	ТМН
Ed Title	Schaum's Outline of Computer Networking	2 nd Ed	ТМН

Course Name: Graphics and Multimedia

Course Code: MCA204

Lecture Hours: 40

Name of the Course:	Graphics and Multimed	ia				
Course Code: MCA2	04	Semester: 2nd				
Duration: 40 Hrs.		Maximum Marks: 100				
Teaching Scheme		Examination Scheme				
Theory: 3		End Semester Exam: 70				
Tutorial: 1		Continuous Assessment: 30				
Credit: 3						
Aim:						
1.	To provide a theoretical technologies.	foundation in computer graphics and multimedia				
2.	To equip students with n and multimedia processi	nathematical and algorithmic principles for graphics ng.				
3.	3. To introduce graphics standards, rendering models, and multimed frameworks used in real-world applications.					
Objective:						
1.	To explain core graphics rendering.	s concepts, including transformations, clipping, and				
2.	To analyze graphics algo shading.	prithms like rasterization, polygon filling, and				
3.	To explore multimedia design methodologies.	components, standards (JPEG, MPEG, MIDI), and				
4.	To understand the theore without hands-on impler	etical aspects of graphics and multimedia systems nentation.				
Pre-Requisite:						
1.	Basic knowledge of prog algebra, geometry, trigor	gramming logic and mathematical concepts (linear nometry).				
Course Outcome:	I					
1.	Explain the fundamenta multimedia.	l concepts of computer graphics and				
2.	Analyze graphics algori	thms for drawing, clipping, and shading.				
3.	Describe multimedia tec	chnologies, standards, and methodologies.				
4.	Evaluate the theoretical processing.	models of graphics rendering and multimedia				

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	2	2	1	1	0	1	0	2	3	1	2
CO2	3	3	2	2	2	1	1	0	0	1	0	2	3	2	2
CO3	3	2	2	1	2	3	2	1	0	2	1	2	3	3	2
CO4	3	3	2	2	2	2	1	1	0	1	1	3	3	2	3

Module number	Торіс	Sub-topics
1	Introduction to Computer Graphics	Application of Computer Graphics, Graphics Devices, Cathode Ray Tube, Raster Scanning, Raster Refresh graphics displays.
2	Graphics Operations and Drawing Algorithms	Graphics Operations –2D & 3D Graphics, Bezier, B-Spline, Hermite, Bresenham Line & Circle Drawing Algorithms, Polygon filling, Edge Filling Algorithms.
3	Clipping and Visible Surface Detection	Clipping Techniques: Cohen-Sutherland subdivision line clipping algorithm, Mid- Point subdivision algorithm, 2-dimensional clipping algorithm (Convex Boundaries & Partially visible lines), Cyrus-Beck algorithm for Partially & Totally Visible Lines) Visible Surface Detection: Floating Horizon Algo., Upper & Lower Horizon, Roberts algo, Warnock algo, Scan-line Z-buffer algo.
4	Rendering and Shading Techniques	Rendering- introduction (illumination models), shading- Gouraud Shading, Phong Shading. Shadowing- Shadow Algorithms
5	Introduction to GKS and Multimedia	Introduction to GKS (Graphical Kernel System). Multimedia, concepts, design, hardware, standards – MPEG, JPEG, MIDI, multimedia design methodology, development and testing

List of Books Tex	List of Books Text Books:							
Name of Author	Title of the Book	Edition/ ISSN/ ISBN	Name of the Publisher					
Hearn & Baker	Computer Graphics	2 nd Ed	PHI					
Reference Books:								
Rogers	Procedural & Mathematical Elements in Computer Graphics		ТМН					
Plastock	Computer Graphics	Schaum Outline Series	ТМН					

57

Course Code: MCA205

Lecture Hours: 40

Name of the Courses	Statistics and Numerical	Techniques		
Course Code: MCA	205	Semester: 2nd		
Duration: 40 Hrs.		Maximum Marks: 100		
Teaching Scheme		Examination Scheme		
Theory: 3		End Semester Exam: 70		
Tutorial: 1		Continuous Assessment: 30		
Credit: 3				
Aim:				
1.	· · ·	oretical foundation in statistical methods and solving computational problems.		
2.	To equip students with n and problem-solving in c	nathematical tools for data analysis, approximation, computing.		
3.		inking for decision-making and error estimation in		
Objective:				
1.	To introduce fundament and hypothesis testing.	al statistical concepts like probability, distributions,		
2.	To explore numerical tec differentiation, and integ	chniques for root finding, interpolation, gration.		
3.	To analyze error propaga	ation and the stability of numerical algorithms.		
4.		numerical methods in computing and real-world		
Pre-Requisite:	· • • • •			
1.	Basic knowledge of alge	bra, calculus, and programming logic.		
Course Outcome:				
1.	Explain fundamental statistical and numerical methods used in computing.			
2.	Apply probability and statistical techniques to analyze data and draw conclusions.			
3.		ques to solve mathematical and computational		
4.	Evaluate the accuracy, e numerical methods.	fficiency, and limitations of statistical and		

CO-PO-PSO Mapping

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	2	1	1	0	0	1	0	2	2	3	2
CO2	3	3	2	2	2	2	1	0	0	1	0	2	2	3	2
CO3	3	3	2	2	2	1	1	0	0	1	1	3	3	2	3
CO4	3	3	2	2	2	2	1	1	0	1	1	3	3	3	3

Module	Торіс	Sub-topics
number	-	
1	Descriptive	Statistics - measure of central tendency, dispersion (Moments,
	Statistics and	Skewness & Kurtosis). Least square curve fitting - linear & non-
	Curve Fitting	linear.
2	Probability and	Probability, introduction to mass function, density function,
	Parameter	distribution function (Binomial, Poisson, Normal), estimation of
	Estimation	parameters (unbiasedness-concept of noise/error, consistency).
3	Interpolation	Interpolation-Newton's Forward, Backward, Sterling & Bessel's
	and Inverse	Interpolation formulae, Lagrange's Interpolation.
	Interpolation	Inverse Interpolation.
4	Numerical	Integration - Trapezoidal, Simpson's 1/3rd, Weddle's Rule,
	Integration	Romberg Integration, Gauss- Legendre two & three points
		formula, Newton Cotes Formula.
5	Root Finding	Solution of any equation - Method of Iteration, Method of
	Methods	Bisection, Newton-Raphson Method, Regula-Falsi method and
		Secant Method.
6	Solving Linear	Solution of system of linear equations - Gauss Elimination
	and Differential	Method, Gauss-Jacobi, Gauss-Seidel, LU factorization and Tri-
	Equations	diagonalization.
		Solution of differential equations - Picard's method, Euler- modified method, Taylor's Series method, Runge-Kutta method, Milne's Predictor-Corrector method.

List of Books Tex	List of Books Text Books:							
Name of Author	Title of the Book	Edition/ ISSN/ ISBN	Name of the Publisher					
Hearn & Baker	Computer Graphics	2 nd Ed	PHI					
Reference Books:								
Rogers	Procedural & Mathematical Elements in Computer Graphics		ТМН					
Plastock	Computer Graphics	Schaum Outline Series	ТМН					

Course Name: General Studies & Current Affairs - I Credit: 0

Course Code: IVC(MC)201

Lecture Hours: 20

Name of the Course: Essential Studies for Professionals-II						
Course Code: IV	7C(MC)201	Semester: 1st				
Duration: 48 Hrs	S.	Maximum Marks: 100				
Teaching Schem	e	Examination Scheme				
Theory: 2		End Semester Exam: 100				
Tutorial: 0		Continuous Assessment: 100				
Credit: 0						
Aim:						
1	To enhance quantitative solving in professional	e aptitude and logical reasoning for effective problem- environments.				
2	To develop oral, listeni interactions.	ng, and reading communication skills for workplace				
3	To equip students with correspondence and pre-	practical communication skills, including professional esentations.				
Objective:						
1	To strengthen quantitat making.	ive and logical reasoning for analytical decision-				
2		non-verbal communication skills, including				
3		nd reading comprehension for better information				
4		mmunication techniques, such as presentations, n, and public speaking.				
Pre-Requisite:						
1.	Basic understanding of concepts.	English language and fundamental mathematical				
Course Outcome	e:					
1.	Apply quantitative aptiprofessional scenarios.	tude and logical reasoning skills in				
2.	Demonstrate effective interactions.	oral and written communication for workplace				
3.		g and reading comprehension for better bonse.				
4.		mmunication strategies, including professional				

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	1	0	0	1	2	1	3	2	3	2
CO2	2	1	1	0	1	1	0	0	1	3	1	2	1	1	1
CO3	2	2	1	0	1	1	0	0	1	3	1	2	1	1	1
CO4	2	1	1	0	1	1	0	0	1	3	1	2	1	1	1

Module number	Торіс	Sub-topics
number 1	GK, Current Affairs and Economics	 GK and Current Affairs – Based on Monthly Magazines provided and recent news of national and international importance. Newspaper Reading: The Economic Times. Basic economics -Types of Economy, Feature of Indian Economy (BECC-101, Block-1, Unit-1, Unit-2, Unit-3) HDI(BECC111, Block-2 http://egyankosh.ac.in/handle/1 23456789/81256 Sectors of the economy and their analysis: Primary (Agriculture, Mining, etc), Secondary (Industry, various policies), Tertiary (services, etc.) (Textbook: Indian Economy: Misra & Puri, Chapter- 30,32) Liberalisation, Privatisation and Globalisation (LPG)(IGNOU, BECC-114, Block-6) http://egyankosh.ac.in/handle/1 23456789/90547 RBI & Its Function- Board of Governance, Operation. Credit control policies- CRR, SLR, Bank rate, Repo rate, Reverse Repo rate, Prime lending rate, MSF, LAF, FERA, FEMA. (BECC-113, Unit-1) http://egyankosh.ac.in/handle/123 456789/89589 Budget (Union, Railway), Concept of revenue, expenditure & different types of deficit. (BECC-109, Block- 3, Unit-9) http://egyankosh.ac.in/handle/1 23456789/76561

References

1. Indian Economy-Ramesh Singh

ſ

Name of the Co	urse: Competitive Apti	tude Training – II
Course Code: Г	VC(MC)202	Semester: 1st
Duration: 20 H	°S.	Maximum Marks: 100
Teaching Schen	ne	Examination Scheme
Theory: 2		End Semester Exam: 100
Tutorial: 0		Continuous Assessment: 100
Credit: 0		
Aim:		
1		reasoning, analytical thinking, and problem-solving skills etitive exams and job recruitment.
2		h language proficiency, focusing on grammar, d professional communication.
3		in data interpretation, improving the ability to analyze and problems efficiently.
Objective:		
1	To strengthen Eng competitive aptitu	lish grammar, vocabulary, and comprehension skills for de tests.
2	To develop logical solving techniques	l and analytical reasoning through structured problem- s.
3	To enhance profice graphical analysis	iency in data interpretation, including tabular and
4	To improve forma professional settin	l communication skills, such as official letter writing, for gs.
Pre-Requisite:		
1.	Basic understand reasoning.	ing of English grammar and elementary mathematical
Course Outcom	e:	
1.		ciency in verbal English, including grammar, eading comprehension.
2.	Apply logical reas exam scenarios.	oning and problem-solving techniques in competitive
3.	Analyze and interp making.	pret data from tables, graphs, and charts for decision-
4.	Develop effective writing.	written communication skills, including official letter

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	0	1	1	0	0	1	3	1	2	1	1	1
CO2	3	3	2	2	2	1	0	0	1	2	1	3	2	3	2
CO3	3	3	2	2	2	2	1	0	1	2	1	3	2	3	2
CO4	2	1	1	0	1	1	0	0	1	3	1	2	1	1	1

Module number	Торіс	Sub-topics
1	Quantitative	Average- Concept on average, different missing numbers in
	Aptitude	average estimation, shortcuts & their application.
		Mixture & Allegation – Proportion & mixtures in percentages,
		populations & liquids, shortcuts & their application.
		Number System- concept of different numbers, remainder theorem,
		factors. Time & Work and Pipe & Cistern- Basic concept, Different
		problems & their shortcut tricks.Time, Speed & Distance Boat &
		Stream

List of Books Text Books:							
Name of Author	Title of the Book	Edition/ISSN/ISBN	Name of the Publisher				
R.S Agarwal	Quantitative Aptitude for Competitive Examination		S.Chand				

Syllabus for MCA Admission Batch 2021, 3rd Semester

Course Name: Operating Systems and Systems Software Credit: 3

Course Code: MCA301

Lecture Hours: 40

Name of the Course:	Operating Systems and S	Systems Software				
Course Code: MCA3	301	Semester: 3 rd				
Duration: 40 Hrs.		Maximum Marks: 100				
Teaching Scheme		Examination Scheme				
Theory: 3		End Semester Exam: 70				
Tutorial: 1		Continuous Assessment: 30				
Credit: 3						
Aim:						
1	To understand the syst	em architecture of an operating system				
2	Ability to apply CPU s	scheduling algorithms to manage tasks.				
3	Initiation into the proc and allocation policies	ess of applying memory management methods .				
4	Knowledge of method deadlock.	s of prevention and recovery from a system				
Objective:						
1	To deliver a detailed known operating System.	owledge of integral software in a computer system –				
2	To understand the work	ings of an operating system as a resource manager.				
3	To familiarize the stude	ents with Process and Memory management.				
4	To describe the problem	n of process synchronization and its solution.				
Pre-Requisite:						
1	You should know about	Computer Architecture and Organization.				
2	Proficiency in C or anoth	her programming language.				
3	Familiarity with Assemb	oly language.				
Course Outcome:						
1		System Concepts: Gain knowledge about tions, generations, processes, and threads.				
2	• •	agement, scheduling algorithms, and sms for efficient resource allocation.				
3	Evaluate memory man mechanisms in operat	nagement techniques, file systems, and security ing systems.				
4		nd Process Control: Understand the basics of Storage Management				

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	2	1	0	0	1	1	0	3	2	0	1
CO2	3	3	3	2	2	1	0	0	1	1	0	2	3	1	1
CO3	3	3	2	2	2	2	1	2	1	1	0	2	3	1	1
CO4	3	2	3	1	2	1	0	0	1	1	0	3	3	0	1

Module number	Торіс	Sub-topics
1	Introduction	1. Introduction to Operating Systems
-	ind outerion	2. Hardware Support for Operating Systems
		3. Resource Management
		4. Operating System Architectures
2	Process	5. Fundamentals of Process Management
_	Management	6. Process Scheduling
		7. Process Communication and Synchronization
		8. Deadlocks
		9. Multi-threading
3	Memory	10. Basic Memory Management
	Management	11. Virtual Memory
4	File Management	12. File Systems
	0	13. File System Implementation
5	Input –Output	14. Basics of I/O Management
	Management	15. Disk Management
6	Security and	16. Security Issues
	Protection	17. Protection Mechanisms
	Advanced	18. Distributed Operating Systems
	Operating	
	System	

List of Books Text Books:	List of Books Text Books:								
Name of	Title of the Book	Edition/ ISSN/	Name of the						
Author		ISBN	Publisher						
Naresh Chauhan	Principles of Operating Systems	1st Ed/ 9780198082873	Oxford Press						
Reference Books:									
Abraham Silberschatz, Peter	Operating System Concept	9th Ed/	WILEY						
B. Galvin		9788126554270							
Andrew S. Tanenbaum	Modern Operating Systems	4th Ed/	Pearson						
		9789332575776	Education						
William Stallings	Operating Systems	9th Ed/	Pearson						
		9789352866717	Education						
Sumitabha Das	UNIX: Concepts and	4th Ed/	McGraw Hill						
	Applications (Lab Reference)	9780070635463	Education						

Name of the Course:	Name of the Course: Operating Systems Laboratory (Unix)						
Course Code: MCA3	393	Semester: 3 rd					
Duration: 12 Week	(S.	Maximum Marks: 100					
Teaching Scheme		Examination Scheme					
Practical: 3		Practical Sessional Internal continuous evaluation: 100					
Credit: 3		Practical Sessional external examination: 100					
Aim:							
1	To understa	nd the system architecture of an operating system					
2	Ability to a	pply CPU scheduling algorithms to manage tasks.					
3		to the process of applying memory management methods on policies.					
4	- L						
Objective:							
1	To deliver a Operating Sy	detailed knowledge of integral software in a computer system – ystem.					
2	To understar	nd the workings of an operating system as a resource manager.					
3	To familiariz	ze the students with Process and Memory management.					
4							
Pre-Requisite:							
1	1						
2	Proficiency i	in C or another programming language.					
3	Familiarity v	vith Assembly language.					
Course Outcome:							
1		Operating System Concepts: Gain knowledge about ystem functions, generations, processes, and threads.					

MCA393: Operating Systems Laboratory (Unix)

CO-PO-PSO Mapping

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	2	1	0	0	1	1	0	3	2	0	1
CO2	3	3	3	2	2	1	0	0	1	1	0	2	3	1	1
CO3	3	3	2	2	2	2	1	2	1	1	0	2	3	1	1
CO4	3	2	3	1	2	1	0	0	1	1	0	3	3	0	1

Module	Торіс	Sub-topics
number		
1	Introduction	1. Basic Unix Commands
2	Process	1. C Programs for Process Scheduling
	Management	2. Implementation of Banker's Algorithm
3	Memory	1. C programs to simulate contiguous memory allocation
	Management	techniques
		2. C programs to simulate the paging technique
4	File Management	1. Unix commands on file operations
		2. C program for file organization technique.
5	Input –Output	1. C programs to simulate contiguous memory allocation
	Management	techniques
		2. C programs to simulate the paging technique
6	Security and	1. Unix commands on file operations
	Protection	2. C program for file organization technique.
	Advanced	
	Operating	
	System	

Course Name: Data Science and Data Analytics

Course Code: MCA303

Lecture Hours: 40

Name of the Course: Data Science and Data Analytics						
Course Code: MCA3	603	Semester: 3 rd				
Duration: 40 Hrs.		Maximum Marks: 100				
Teaching Scheme		Examination Scheme				
Theory: 3		End Semester Exam: 70				
Tutorial: 1		Continuous Assessment: 30				
Credit: 4						
Aim:						
1	To provide a compreh	ensive understanding of data science and				
	analytics techniques for	or extracting meaningful insights.				
2	To develop proficienc	y in data preprocessing, statistical analysis, and				
	machine learning for c	lecision-making.				
3	To introduce big data	technologies, cloud computing, and AI-based				
	applications in modern					
Objective:		-				
1	To explore data manage	ment, warehousing, and mining techniques for				
	structured analysis.					
2	To apply statistical meth	nods and data visualization for insightful				
	interpretation.					
3	To understand machine	learning concepts such as classification, clustering,				
	and predictive modelling	-				
4	e 1	atforms, cloud computing, and IoT in data-driven				
	applications.					
Pre-Requisite:						
1	Basic knowledge of stati	stics, programming (Python/R), and databases.				
Course Outcome:						
1		nent, mining, and preprocessing techniques for				
	analytics.					
2	Apply statistical and r	nachine learning methods to analyze and				
	interpret data.					
3	-	ologies, cloud computing, and IoT for data-				
	driven solutions.					
4	Implement machine le	earning models for real-world applications				
	using Python/R.					

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	2	1	1	0	1	1	1	2	3	3	2
CO2	3	3	3	2	3	1	1	0	1	1	2	3	3	3	3
CO3	3	3	3	2	3	2	2	1	1	2	2	3	3	3	3
CO4	3	3	3	2	3	2	2	1	1	2	2	3	3	3	3

Module	Торіс	Sub-topics
number		
1	Introduction to	Brief idea about Data Warehousing, Architecture and Data
	Data	Flows, Data pre-processing before analysis, Data preparation,
	Management:	OLAP & OLTP, Case study.
2	Introduction to	Brief idea about Data Mining, It's goals and techniques,
	Data Mining:	Architecture and KDD Process, Knowledge representation
		methods.
3	Statistics and	Data Visualization, Summarize and describe data sets using a
	Analytics:	measures such as Central tendency and variability, Learn
		probability, Central Limit Theorem and much more to draw
		inferences
4	Introduction to Big	Understand the basic concepts of Big Data and Hadoop as
	Data Analytics:	processing platforms for Big Data, Managing Big Data - Learn
		and Use Hadoop Ecosystem tools for data ingestion, extraction
		and management. Introduction to Hive.
5	Cloud	Introduction to Cloud Computing, types, services, applications,
	Computing:	Security & research scope. Internet of Things:
6	Introduction to	Introduction to IOT and WSN, Basic concepts of Robotics
	IOT and WSN:	Using Arduino & Rasberry Pi Programming.
7	Introduction to	Introduction to artificial intelligence, Brief idea about Natural
	NLP & AI	Language Processing.
8	Basic concepts of	To implement linear regression, Data classification, Data
	Machine	clustering - To learn how to create segments based on
	Learning	similarities using K-Means and Hierarchical clustering, Case
		study using Python.
9	Applications of	Time series, Decision trees, Support Vector Machine, Neural
	Machine	Networks, Case Study Using MATLAB.
	Learning.	

List of Books Text Books:

- 1. "Data Mining : Concepts and Techniques" by Jiawei Han and Micheline Kamber
- 2. "Artificial Intelligence and Soft Computing: Behavioral and Cognitive Modeling of the Human Brain" by Amit KonarLogic & Prolog Programming, Saroj Kaushik, New Age International
- 3. "Big Data" by Anil Maheshwari
- 4. "Wireless Sensor Netwroks" by Ian F. Akyildiz & Mehmet Can Vuran
- 5. "Wireless Ad Hoc and Sensor Networks : Theory and Applications" by Xian Yang Li
- 6. "Mastering Cloud Computing : Foundations and Applications Programming" by Rajkumar Buyya
- 7. "Fundamentals of Neural Networks: Architectures, Algorithms and Applications" by L. Fausett

Name of the Course: Data Science and Data Analytics Laboratory						
Course Code: MCA3	92	Semester: 3 rd				
Duration: 12 Weeks	5.	Maximum Marks: 100				
Teaching Scheme		Examination Scheme				
Practical: 3		Practical Sessional Internal continuous evaluation: 100				
Credit: 3		Practical Sessional external examination: 100				
Aim:						
1	To gain Kno	wledge of Various aspects of data science and data analytics.				
2		he ability to identify qualities of a good solution of AI, Big				
3		nt learned analytical techniques and data science to solve				
Objective:						
1	Provide you scientist.	with the knowledge and expertise to become a proficient data				
2		e an understanding of statistics and machine learning concepts for data science.				
3	Produce Pyt	hon code to statistically analyze a dataset.				
4	Critically ev	valuate data visualizations based on their design and use for				
	communicati	ing stories from data.				
Pre-Requisite:	ſ					
1	Basic knowle	edge of statistics, programming (Python/R), and databases.				
Course Outcome:						
1		data is collected, managed and stored for data science.				
2		he key concepts in data science, including their real-world				
	applications	and the toolkit used by data scientists.				
3	Implement d	ata collection and data mining techniques using database.				
4	Understand	handling of big data.				

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	2	1	1	0	1	1	1	2	3	3	2
CO2	3	3	3	2	3	1	1	0	1	1	2	3	3	3	3
CO3	3	3	3	2	3	2	2	1	1	2	2	3	3	3	3
CO4	3	3	3	2	3	2	2	1	1	2	2	3	3	3	3

Module number	Торіс	Sub-topics
1	Introduction to Data Management:	 Write a program for displaying reversal of a number. Implement python script to read person's age from keyboard and display whether he is eligible for voting or not.

		3. Implement python script to check the given year is leap year or not.
		 Implement Python Script to generate prime numbers series up to n
		5. To display elements of list in reverse order.
		 Implement python script to accept line of text and find the number of characters, number of vowels and number of blank spaces in it.
		 Write a program which makes use of function to display all such numbers which are divisible by 7 but are not a multiple of 5, between 1000 and 2000.
		Implement a python script for factorial of number by using recursion.
2	Introduction to Data Mining:	 Write a program which accepts a sequence of comma- separated numbers from console and generate a list and a tuple which contains every number. Suppose the following input is supplied to the program: 34, 67, 55, 33, 12, 98. Then, the output should be: ['34', '67', '55', '33', '12', '98'] ('34',67', '55', '33', '12', '98').
		 Write Python script to copy file contents from one file to another.
		 Implement a python script to check the element is in the list or not by using Linear search & Binary search.
		 Implement a python script to arrange the elements in sorted order using Bubble, Selection, Insertion and Merge sorting techniques.
		5. Write a python program by using exception handling mechanism.
		6. Write a python program to perform various database operations (create, insert, delete, update).
3	Statistics and Analytics:	1. Write a program to compute summary statistics such as mean, median, mode, standard deviation and variance of the given different types of data.
		 Write a program to demonstrate Regression analysis with residual plots on a given data set.

7	Introduction to	Python lab for text analysis
	NLP & AI	
		1. Choose some book-length document and download it.
		2. Count its characters, lines and words.
		3. Count sentences, vocabulary, and the like.
		4. Show collocations, common context, concordance, and
		similar relationships among the words.
		5. Plot a lexical dispersion or two.
		6. Plot a frequency distribution of the most common words.
8	Basic concepts of	1. Write a program to demonstrate the working of the
	Machine Learning	decision tree-based ID3 algorithm.
		2. Write a program to implement the Naïve Bayesian
		classifier for a sample training data set stored as a .CSV
		file.
9	Applications of	1. Write a program to implement k-Nearest Neighbour
	Machine Learning.	algorithm to classify the iris data set.
		2. Write a program to implement k-Means clustering
		algorithm to cluster the set of data stored in .CSV file.

Course Name: Software Engineering & TQM

Course Code: MCA304

Lecture Hours: 40

Name of the Course:	Software Eng	ineering & TQM				
Course Code: MCA3	04	Semester: 3 rd				
Duration: 12 Weeks	5.	Maximum Marks: 100				
Teaching Scheme		Examination Scheme				
Practical: 3		Practical Sessional Internal continuous evaluation: 100				
Credit: 4		Practical Sessional external examination: 100				
Aim:						
1	To gain know	vledge of various aspects of software engineering project				
	management					
2	To enhance a	ability to identify qualities of a good solution				
3	To implement	nt learned algorithm/design techniques to solve problems				
Objective:						
1	The fundame	ental knowledge of software engineering				
2	The different	basic models need to implement different project problems				
3	The various	design methods to develop the software system				
4	The quality a	and other issues related to the software products and systems				
Pre-Requisite:						
1	Knowledge in	n fundamental theories of computer science and one				
	programming	language				
Course Outcome:						
1	On completion	on of this course students are expected to learn fundamentals				
	and different	models of software engineering.				
2	On completion	on of this course students are expected to learn different				
	aspects of re-	quirement analysis in software project management.				
3	On completion	on of this course students are expected to learn various types				
	of software d	lesign and concepts of coding.				
4	On completion	on of this course students are expected to learn different types				
	of testing and	d quality issues.				

CO-PO-PSO Mapping

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	2	0	0	1	0	1	1	2	3	1	2
CO2	3	3	3	2	2	1	0	2	1	2	3	2	3	1	2
CO3	3	3	3	2	3	0	0	1	0	1	2	3	3	2	3
CO4	3	3	3	3	3	1	1	2	1	2	3	3	3	1	3

Module	Торіс	Sub-topics
number		
1.	Introduction	1. Make a comparative studies of different models of
	and Software	software development process
	Process Models	
2.	Requirement	2. Write an SRS.
	Engineering	3. Compute function points using the method of FPA to
	and Software	determine the cost of s/w project
	Project Management	4. Implement COCOMO using the different formulas
	Management	5. Implement Gantt Chart and determine milestones
		6. Implement PERT-CPM method
3.	Software	7. Implement the Cyclomatic Complexity of coding
	Design and	8. Implement and evaluate the Halstead's Metrics of
	Coding	Coding
		9. Implement Dharma's metrics
		10. Implement polymorphism factor formula.
		11. Implement inheritance formula
4.	Testing and	12. Implement H-K information factor.
	Software	13. Implement EMV method
	Quality	1

Name of the Course:	Software Proje	ct Management Laboratory				
Course Code: MCA3	94	Semester: 3 rd				
Duration: 12 Weeks	S.	Maximum Marks: 100				
Teaching Scheme		Examination Scheme				
Practical: 3		Practical Sessional Internal continuous evaluation: 100				
Credit: 3		Practical Sessional external examination: 100				
Aim:						
1	To gain knowl	edge of various aspects of software engineering project				
	management.					
2	To enhance ab	ility to identify qualities of a good solution				
3	To implement	learned algorithm/design techniques to solve problems				
Objective:						
1	The fundamen	tal knowledge of software engineering				
2	The different b	asic models need to implement different project problems				
3	The various de	esign methods to develop the software system				
4	The quality an	d other issues related to the software products and systems				
Pre-Requisite:						
1	Knowledge in programming l	fundamental theories of computer science and one anguage				
Course Outcome:						
1	On completion	n of this course students are expected to learn fundamentals				
	and different r	nodels of software engineering.				
2	On completion	n of this course students are expected to learn different				
	aspects of requ	uirement analysis in software project management.				
3	On completion	n of this course students are expected to learn various types				
	of software de	sign and concepts of coding.				
4	On completion	of this course students are expected to learn different types				
	of testing and	quality issues.				

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	2	0	0	1	0	1	1	2	3	1	2
CO2	3	3	3	2	2	1	0	2	1	2	3	2	3	1	2
CO3	3	3	3	2	3	0	0	1	0	1	2	3	3	2	3
CO4	3	3	3	3	3	1	1	2	1	2	3	3	3	1	3

Module number	Торіс	Sub-topics					
1.	Introduction	Software, Software Engineering, Myths, Software Process, Work					
	and Software	Products, Importance of SoftwareEngineering, Standard for					
	Process Models	Software Process, Waterfall Model, Prototyping Model, Iterative					
		Enhancement Model, Spiral Model, RAD model.					
2.	Requirement	Software Requirements, Types of Requirements, Requirement					
	Engineering	Engineering Cycle, Requirements Specification document,					
	and Software	Characteristics of Requirements, Requirement verification and					
	Project	validation, Role of Management in Software Development,					
	Management	ProjectEstimation Techniques, Staffing, Scheduling, Earned					
	Management	Value Analysis, SoftwareRisks, SoftwareConfiguration					
		Management, Software Process and Project metrics.					
3.	Software	Process, Data and Behavioural Modelling, Design Concepts,					
	Design and	Modularity, Architectural design, Coupling and Cohesion, Top-					
	Coding	downand bottom-up design, Object- oriented Analysis,					
		Function-oriented and Object-Oriented Designapproach, Software					
		DesignDocument, Coding styles anddocumentation,					
4.	Testing and	Testing principles, testing strategies, Black-box and White- box					
	Software	Testing Techniques, Levels of testing -unit, integration, system,					
	Quality	regression, Test Plan, Test Cases Specification, Software					
	· •	debugging,Software Maintenance, Software Quality Factors, ISO					
		, SEI CMM, CMMI, Software Reliability. Software Availability.					

List of Books Text Boo	oks:		
Name of	Title of the Book	Edition/ ISSN/	Name of the
Author		ISBN	Publisher
Rajib Mall	Fundamentals of Software Engineering	4 th ed	PHI
Reference Books:			
Roger S. Pressman	Software Engineering, A Practitioners Approach	7 th ed	MGH

Course Name: Values and Ethics

Credit: 1

Course Code: MCA305

Lecture Hours: 40

Name of the Course:	Values and Et	thics						
Course Code: MCA3	05	Semester: 3 rd						
Duration: 12 Weeks	s.	Maximum Marks: 100						
Teaching Scheme		Examination Scheme						
Practical: 3		Practical Sessional Internal continuous evaluation: 100						
Credit: 1		Practical Sessional external examination: 100						
Aim:								
1	To gain kno	wledge of various aspects general ethics and energy in life.						
2	To get abili	ty to identify relations among technology, engineering and						
	human aspe	ects						
3	To impleme	ent values in various aspects of life with morality.						
Objective:	. –							
1	-	analyze a problem, then identify and formulate the computing s appropriate to its solution						
2	Developmen Computer ba	t of Solutions- An ability to design, implement and evaluate a used problems with appropriate consideration for public health ultural, societal and environmental considerations.						
3	Conduct inve	estigations of complex problem – An ability to design and eriments, as well as to analyze and interpret data to reach valid						
4	-	analyze a problem, then identify and formulate the computing s appropriate to its solution						
Pre-Requisite:								
1	Knowledge in Communication	n General Studies, Fundamentals of Computers, Proficiency in ion Skills.						
Course Outcome:								
1		ng the importance and role of science, technology and as knowledge and social-professional world, know the l growth.						
2	understand th	e importance of energy as resource and crisis in energy, he effect of degradation and pollution of environment, o-friendly technology.						
3	transfer, asse resource in e	e appropriate technology for development, understand the essment and impact of technology, learn the role of human engineering, man-machine interaction, impact of automation, man-centric technology.						
4		e the relation between profession and human values like value ety, life, personality and mental health. know the						

role/importance of values in law, justice in Indian perspective, know the
aesthetic values, learning the relation between morality and ethics and
virtue ethics.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	0	1	3	2	0	0	1	0	3	3	0	1
CO2	2	0	1	0	0	3	3	0	0	0	0	2	2	0	0
CO3	3	3	3	1	2	2	2	0	1	1	2	3	3	1	2
CO4	2	0	1	0	0	2	1	3	0	2	0	2	1	0	0

Module	Торіс	Sub-topics
number		
1.	Introduction and	Science, Technology and Engineering as Knowledge and as
	Relation with	Social and Professional
	Energy	Activities Effects of Technological Growth
		Rapid Technological growth and depletion of resources.
		Reports of the Club of Rome. Limits of growth.
		Energy Crisis; Renewable Energy Resources
		Environmental degradation.
2.	Human,	Technologies. Environmental Regulations. Environmental
	Technology and	Ethics
	Engineering	Appropriate Technology Movement of Schumacher
	Ethics	Human Operator in Engineering projects and industries. Problems of man machine interaction. Impact of assembly line and automation.
		Engineering profession: Ethical issues in engineering practice.
		Conflicts between business demands and professional ideals.
		Social and ethical Responsibilities of Technologists
3.	General Values	Nature of values: Value Spectrum of a 'good' life Psychological
		values: Integrated personality; mental health
4.	Other Types of	The modern search for a 'good' society, Moral and ethical
	Values and	values: Nature of moral judgments; canons of ethics; Ethics of
	Morality	virtue; ethics of duty; ethics of responsibility

List of Books Text Books:			
Name of	Title of the Book	Edition/ ISSN/	Name of the
Author		ISBN	Publisher
S.K. Sarangi	Values & Ethics of Profession &	2nd ed	Asian
	Business		Books
Reference Books:			
Manna, Chakraborti	Values and Ethics in Business and	1st ed	PHI
	Profession		
Chattopadhyay, Singh	Ethics & Values for Engineers &	1st ed	HPH
	Managers		

Course Name: Environment and Ecology

Credit: 2

Course Code: MCA306

Lecture Hours: 40

Name of the Cours	e: Environment and Ecolog	gy		
Course Code: MC	A306	Semester: 3 rd		
Duration: 40 Hrs.	ation: 40 Hrs. Maximum Marks: 100			
Teaching Scheme		Examination Scheme		
Theory: 3		End Semester Exam: 70		
Tutorial: 1		Continuous Assessment: 30		
Credit: 2				
Aim:				
1	Imparting knowledge ab	out the environment and ecosystem around us.		
2	Imparting knowledge ab importance of their cons	out the natural resources, biodiversity, and the ervation		
3	Environmental Manage	ment and Pollution Control		
Objective:				
1	Students will gain know	ledge about the environment and ecosystem.		
2	Students will learn about of their conservation	at natural resources, biodiversity, and the importance		
3		e of problems of environmental pollution, its impact system, and control measures.		
4	At the end of the course and environmental man	e, students will learn about waste disposal measures agement.		
Pre-Requisite:				
1	NA			
Course Outcome:				
1	Define Environmental	factors and the basic components of the ecosystem.		
2	Understand and explain	the importance of Plantation.		
3	List the pollutants and a environmental pollution	analyze the importance of reducing/ controlling		
4		e of Biohazards, Environmental and Social safety		

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	3	3	2	1	2	1	2	2	2	3	2	1	2	2
CO2	3	2	3	2	2	3	1	2	2	1	1	1	3	1	3
CO3	2	2	1	3	1	2	3	3	1	1	2	3	3	3	1
CO4	1	3	1	3	3	2	2	3	2	3	2	1	1	1	2

Module	Торіс	Sub-topics
I	Overview	Basic ideas of environment, basic concepts, man, society & environment, their interrelationship Mathematics of population growth and associated problems, Importance of population study in environmental engineering, the definition of resource, types of resource, renewable, non-renewable, potentially renewable, effect of excessive use vis-à-vis population growth, Sustainable Development. Materials balance: Steady state conservation system, steady state system with non-conservative pollutants, step
II	Ecology	function. Importance, scope and principles of EIA. Elements of ecology: System, open system, closed system, the definition of ecology, species, population, community, definition of ecosystem- components types and function. (1L) Structure and function of the following ecosystem: Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems, Mangrove ecosystem (special reference to Sundar ban); Food chain [definition and one example of each food chain], Food web.(2L) Biogeochemical Cycle- definition, significance, flow chart of different cycles with only elementary reaction [Oxygen, carbon, Nitrogen, Phosphate, Sulphur]. (1L) Biodiversity- types, importance, Endemic species, Biodiversity Hot-spot, Threats to biodiversity, Conservation of biodiversity.(2L)
III	Air Pollution	Atmospheric Composition: Troposphere, Stratosphere, Mesosphere, Thermosphere, Tropopause and Mesopause. (1L) Energy balance: Conductive and Convective heat transfer, radiation heat transfer, simple global temperature model [Earth as a black body, earth as albedo], Problems.(1L) Green house effects: Definition, impact of greenhouse gases on the global climate and consequently on sea water level, agriculture and marine food. Global warming and its consequence, Control of Global warming. Earth's heat budget.(1L) Lapse rate: Ambient lapse rate Adiabatic lapse rate, atmospheric stability, temperature inversion (radiation inversion).(2L) Atmospheric dispersion: Maximum mixing depth, ventilation coefficient, effective stack height, smokestack plumes and Gaussian plume model.(2L) Definition of pollutants and contaminants, Primary and secondary pollutants: emission standard, criteria pollutant. Sources and effect of different air pollutants- Suspended particulate matter, oxides of carbon, oxides of nitrogen,

		oxides of sulphur, particulate, PAN. (2L) Smog, Photochemical smog and London smog. Depletion Ozone layer: CFC, destruction of ozone layer by CFC, impact of other green-house gases, effect of ozone modification. (1L) Standards and control measures: Industrial, commercial and residential air quality standard, control measure (ESP. cyclone separator, bag house, catalytic converter, scrubber (ventury), Statement with brief reference). (1L)
IV	Water Pollution	Pollutants of water, their origin and effects: Oxygen demanding wastes, pathogens, nutrients, Salts, thermal application, heavy metals, pesticides, volatile organic compounds.DO, 5-day BOD test, Seeded BOD test, BOD reaction rate constants, Effect of oxygen demanding wastes on river [deoxygenating, reaeration], COD, Oil, Greases, pH. Lake: Eutrophication [Definition, source and effect]. Waste water standard [BOD, COD], Water Treatment system, primary and secondary treatments, tertiary treatment definition.Water pollution due to the toxic elements. USEPA and WHO guidelines for drinking water.
V	Lithosphere	Lithosphere; Internal structure of earth, rock and soil (1L). Solid Waste: Municipal, industrial, commercial, agricultural, domestic, pathological and hazardous solid wastes; Recovery and disposal method- Open dumping, Land filling, incineration, composting, recycling. Solid waste management and control (hazardous and biomedical waste).(2L)
VI	Noise pollution	Definition of noise, effect of noise pollution, noise classification [Transport noise, occupational noise, neighbourhood noise] (1L) Definition of noise frequency, noise pressure, noise intensity, noise threshold limit value, equivalent noise level, L10 (18hr Index) ,n Ld.Noise pollution control. (1L)
VII	Environmental Management	Environmental impact assessment, Environmental Audit, Environmental laws and protection act of India, Different international environmental treaty/ agreement/ protocol. (2L)

List of Books Text Books:

- 1. Environmental Science, Cunningham, TMH
- 2. Environmental Science, Wright & Nebel, PHI
- 3. Fundamentals of Ecology, Dash, TMH
- 4. Environmental Pollution Control Engineering, C.S.Rao, New Age International
- 5. Environmental Pollution Analysis, S.N.Khopkar, New Age International
- 6. Environmental Management, N.K. Oberoi, EXCEL BOOKS
- 7. Environmental Management, Mukherjee, VIKAS
- 8. Ecosystem Principles & Sustainable Agriculture, Sithamparanathan, Scitech

Course Name: General Studies & Current Affairs - III Credit: 0.5

Course Code: MCA(GS)301

Lecture Hours: 20

Name of the Course:	General Studies & Cu	rrent Affairs - III		
Course Code: MCA	(GS)301	Semester: 3 rd		
Duration: 48 Hrs.	uration: 48 Hrs. Maximum Marks: 100			
Teaching Scheme		Examination Scheme		
Theory: 2		End Semester Exam: 100		
Tutorial: 0		Continuous Assessment: 100		
Credit: 0.5				
Aim:				
Sl. No.				
1	To enhance quantitative solving in professional e	aptitude and logical reasoning for effective problem- nvironments.		
2	To develop oral, listenin interactions.	g, and reading communication skills for workplace		
3	To equip students with p correspondence and pres	practical communication skills, including professional sentations.		
Objective:				
Sl. No.				
1	To strengthen quantitativ making.	ve and logical reasoning for analytical decision-		
2	To improve verbal and n articulation and clarity.	on-verbal communication skills, including		
3	To enhance listening an processing.	d reading comprehension for better information		
4	To develop practical con business communication	nmunication techniques, such as presentations, a, and public speaking.		
Pre-Requisite:	1			
Sl. No.				
1.	Basic understanding of I concepts.	English language and fundamental mathematical		
Course Outcome:				
1.	Apply quantitative aptit professional scenarios.	ude and logical reasoning skills in		
2.	Demonstrate effective o interactions.	ral and written communication for workplace		

3.	Exhibit active listening and reading comprehension for better understanding and response.
4.	Implement practical communication strategies, including professional presentations and business communication.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	3	2	2	2	1	0	0	1	2	1	3	2	3	2
CO2	2	1	1	0	1	1	0	0	1	3	1	2	1	1	1
CO3	2	2	1	0	1	1	0	0	1	3	1	2	1	1	1
CO4	2	1	1	0	1	1	0	0	1	3	1	2	1	1	1

Module number	Торіс	Sub-topics
1	History	 1. Pre sultanate age: Md. Bipin Karim, Aluptagin, Sabuktagin, Sultan Mamud, Md. Ghori 2Delhi Sultanate: Slave dynasty, Khalji dynasty, Tughlaw dynasty, Sayyed dynasty, Lodhi dynasty 3. Bhakti and Sufi movement: Kabir, Gurunanak, Chaitanya, Namdev 4. Mughal Period: Babur, Humayun, Sher shah suri, Akbar, Jehangir, Shah Jahan, Aurangzeb, Aministrative system, Din-i- ilahi, Art and architecture, Land revenue system
2	Geography	 Drainage system Types of river (Perennial, Non perennial, Inland drainage) Courses of river: Upper, Middle, Lower courses Landforms carved out by river based on the courses. Basic terminologies: Antecedent rivers, Consequent rivers, Fault guided river, Tributary, Distributary Indian river system (Himalayan, Peninsular, Coastal) Types of Irrigation in India Well Tanks Canal Problems of irrigation in India Status of Irrigation in India as per 2011 census Clouds and Precipitation: Forms of precipitation, Types of rainfall, Types of clouds.
3	Macro Economics	 National income- Concept of GDP, GNP, NNP both in FC & MP, PCI Tax – Concept of TAX , objective of TAX, Direct & Indirect Tax, Progressive, Regressive & Proportional tax.

	 RBI & Banking- Traditional Functions of RBI, CRR, SLR, REPO, Reverse repo, MSF, LAF market, capital market, capital market, Money market, FOREX. Budget- concept of budget, components of budget, different types of deficit. Keynesian outlook- IS,LM & different multipliers. Inflation& Deflation- Inflation & its impact, Deflation & its impact, WPI, CPI, GDP deflator.
Constitution	 Central State relation, Interstate relation, Supreme Court-Appointment of Chief Justice, Acting Chief Justice, Qualification, Oath or Affirmation, Tenure of Judge, Removal of Judges, Salaries & allowance, Adhoc Judge, Procedure of the court, write jurisdiction, Power of Judicial review
	 High Court-Appointment of Chief Justice, Acting Chief Justice, Qualification, Oath or Affirmation, Tenure of Judge, Removal of Judges, Salaries & allowance, Adhoc Judge, Procedure of the court, write jurisdiction, Power of Judicial review Duties& Powers of Attorney & Advocate General in Brief Panchayati Raj- Three tier system, Different committees recommendation Municipality, Municipal Council & Corporation, Official Languages & related Articles
	Constitution

References

1. History:

India's Ancient Past (Ancient History) : R.S. Sharma

History of medieval India (Medieval History): Satish Chandra History of Modern India (Modern History): Bipin Chandra

India's struggle for Independence (Modern History): Bipin Chandra

Geography:

India- Khullar Economics:

Indian Economy- TATA Mc Graw Hill/Ramesh Singh Indian Economy – Arihant

Constitution:

Indian Constitution- D.D. Basu

Our Constitution- Subhash.C. Kashyap

Name of the Cou	irse: Competitive Aptitud	de Training – III
Course Code: M	[CA(GS)381	Semester: 3 rd
Duration: 20 Hrs.		Maximum Marks: 100
Teaching Scheme		Examination Scheme
Theory: 2		End Semester Exam: 100
Tutorial: 0.5		Continuous Assessment: 100
Credit: 1		
Aim:		
Sl. No.		
1	-	oning, analytical thinking, and problem-solving skills e exams and job recruitment.
2		guage proficiency, focusing on grammar, ofessional communication.
3	To build expertise in da solve quantitative probl	ta interpretation, improving the ability to analyze and ems efficiently.
Objective:		
Sl. No.		
1	To strengthen English g competitive aptitude te	grammar, vocabulary, and comprehension skills for sts.
2	To develop logical and solving techniques.	analytical reasoning through structured problem-
3	To enhance proficiency graphical analysis.	v in data interpretation, including tabular and
4	To improve formal con professional settings.	nmunication skills, such as official letter writing, for
Pre-Requisite:		
Sl. No.		
1.	Basic understanding or reasoning.	of English grammar and elementary mathematical
Course Outcome:		
1.	Demonstrate proficience vocabulary, and reading	cy in verbal English, including grammar, g comprehension.
2.	Apply logical reasoning exam scenarios.	g and problem-solving techniques in competitive
3.	Analyze and interpret of making.	lata from tables, graphs, and charts for decision-
4.	Develop effective writt writing.	en communication skills, including official letter

-(87 **)**

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	0	1	1	0	0	1	3	1	2	1	1	1
CO2	3	3	2	2	2	1	0	0	1	2	1	3	2	3	2
CO3	3	3	2	2	2	2	1	0	1	2	1	3	2	3	2
CO4	2	1	1	0	1	1	0	0	1	3	1	2	1	1	1

Module number	Торіс	Sub-topics
1	Quantitative Aptitude	 Simple & Compound Interest- Basic concept of SI & CI, different formulas & their applications, concept of Growth & Contraction of Business. Data Interpretation- Tables, pie chart, histogram, Bar chart, solution tricks & techniques. Quant Review- Miscellaneous problems from different chapters & short cuts. Indices & Surds- Basic concept, Formulae & their applications, Finding out the square roots, Elimination of Surds, Equation solve. Quadratic Equation- polynomials, degree, powers, Equation & factors Solution. Progression- Concept of AP, GP & HP
2	Objective English	 Error based on Noun & Pronoun. Error based on Adjective & Degree of comparison. Error based on Adverb & Synonym And Antonym. Error Based on Verbs & Some Special Phrasal Verbs. Reading Comprehension Passage.
3	Logical Mental Ability	 a)Statement And Assumption, b)Statement And Conclusion, c)Statement And Course Of Action, d)Cause And Effect, e)Drawing Inference Machine Input-Output a) Pattern Based I/O Inequality b) Jumbled Inequality, c) Conditional inequality Coded Inequality, b) Jumbled Inequality, c) Conditional inequality Calendar And Clock
4	Computer proficiency	C programming, Basics of C++

List of Books Text Books:

Numerical Aptitude

- 1. Fastrack objective Arithmetic: Arihant
- 2. Quantitative aptitude for Competitive exam (4th Edition): TATA Mc Graw Hill
- 3. Quantitative aptitude for Competitive exam (3rd Edition): PEARSON

Verbal Ability

- 1. Objective English: Kiran Publication
- 2. General English: Arihant

LOGICAL REASONING

- 1. Analytical & Logical Reasoning: M.K. Pandey/B.S.C. Publication
- 2. A modern approach to verbal & non verbal Reasoning: R.S. Agarwal.

Course Name: Minor Project

Course Code: MCA391

Name of the Cour	se: Minor Project							
Course Code: MC	A391	Semester: 3 rd						
Duration: 12 We	eeks.	Maximum Marks: 100						
Teaching Schem	e	Examination Scheme						
Practical: 0		Practical Sessional Internal continuous evaluation: 100						
Credit: 6		Practical Sessional external examination: 100						
Aim:	1							
Sl. No.								
1	To enable students to apply through project developme	theoretical knowledge to real-world problems nt.						
2	To enhance problem-solvir	ng, software development, and research skills.						
3	To develop teamwork, proj	ect management, and documentation abilities.						
Objective:								
Sl. No.								
1	To identify and define a rea	al-world computing problem.						
2	To design and implement a technologies.	software solution using appropriate tools and						
3	To analyze and evaluate the system.	e efficiency and effectiveness of the developed						
4	To document and present the	he project findings professionally.						
Pre-Requisite:								
Sl. No.								
1.	Knowledge of programmin, (SDLC).	g, databases, and software development lifecycle						
Course Outcome:	-							
1.	Identify and define a proble applications.	em statement relevant to computing						
2.	Develop a functional proto	type or software solution using modern tools.						
3.	Demonstrate analytical and	l technical skills in project execution.						
4.	Present a well-documented	project report with findings and future scope.						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	1	0	1	1	1	2	2	3	2	2
CO2	3	3	3	2	3	1	0	1	1	1	2	3	3	2	3
CO3	3	3	3	2	3	1	0	1	1	2	2	3	3	2	3
CO4	2	2	2	1	2	1	0	1	1	3	2	2	2	1	2

Course Name: Industrial Training

Course Code: MCA381

Name of the Cours	se: Industrial Training							
Course Code: MC	A391	Semester: 3 rd						
Duration: 12 We	eks.	Maximum Marks: 100						
Teaching Schem	e	Examination Scheme						
Practical: 0		Practical Sessional Internal continuous						
		evaluation: 100						
Credit: 2		Practical Sessional external examination: 100						
Aim:								
Sl. No.								
1	To provide practical indust knowledge.	ry exposure and application of theoretical						
2	To enhance problem-solvir world environment.	ng, teamwork, and professional skills in a real-						
3	To familiarize students wit industry.	h latest technologies, tools, and best practices in the						
Objective:								
Sl. No.								
1	To apply academic knowle	dge to real-world projects.						
2	To develop technical, analy experience.	ytical, and professional skills through hands-on						
3	To understand industry wo methodologies.	rkflows, ethics, and project management						
4		n, collaboration, and adaptability in a corporate						
Pre-Requisite:	<i>o</i>							
Sl. No.								
1.	Completion of core MCA c	coursework in programming, databases, and						
	software development.							
Course Outcome:	1							
1.	-	ciency by working on industry-relevant projects.						
2.		d analytical skills to real-world challenges.						
3.	Exhibit teamwork, commusetting.	nication, and professionalism in an industrial						
4.	Gain exposure to emerging	g technologies, tools, and best industry practices.						

CO-PO-PSO Mapping

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	2	3	1	3	1	0	1	2	1	2	3	3	2	2

92

C	202	3	3	3	2	3	2	0	1	2	1	2	3	3	3	3
С	203	2	2	2	1	2	2	0	2	3	3	3	2	2	1	2
С	204	3	2	3	1	3	2	1	1	2	2	2	3	3	2	3

Syllabus for MCA Admission Batch 2021, 4th Semester

Course Name: Distributed Database Management Credit: 3

Course Code: MCA401A

Lecture Hours: 40

Name of the Course:	Operating Systems and	Systems Software							
Course Code: MCA3	01	Semester: 4 th							
Duration: 40 Hrs.		Maximum Marks: 100							
Teaching Scheme		Examination Scheme							
Theory: 3		End Semester Exam: 70							
Tutorial: 1		Continuous Assessment: 30							
Credit: 3									
Aim:	1								
1	Develop a deep understa principles.	nding of distributed database architecture and design							
2	Equip students with skill managing transactions.	ls for optimizing distributed query processing and							
3	Enable application of da for real-world problem-s	ta warehousing, OLAP, and data mining techniques solving.							
Objective:									
1	Understand the architec	ture and design of distributed database systems.							
2	Apply techniques for di	stributed query processing and optimization.							
3	Master the concepts of o warehousing.	distributed transaction processing and data							
4	Utilize data mining met	hods such as association analysis, classification, and							
Pre-Requisite:									
1		se Management Systems, Basic Knowledge of ogramming Skills & Operating systems							
Course Outcome:	Ι								
1	Understand and expla distributed database sy	in the architecture and design principles of ystems.							
2	Apply methods and te optimization.	chniques for distributed query processing and							
3	Understand the conception warehousing, and OL.	pts of distributed transaction processing, data AP technology.							
4	Apply methods and te classification, and clu	chniques for data association analysis, stering.							

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	1	1	1	1	0	0	0	2	3	1	1
CO2	2	2	1	1	2	1	0	1	0	0	0	1	2	1	1
CO3	3	2	2	2	3	1	1	1	0	0	0	2	3	2	1
CO4	3	3	2	2	2	1	1	2	1	1	1	2	3	1	2

Module number	Торіс	Sub-topics							
1	Introduction	Distributed DBMS features and needs. Reference							
	to Distributed	architecture. Levels of distribution transparency, and							
	Database	replication. Distributed database design – fragmentation,							
	Management	allocation criteria. Storage mechanisms. Translation of							
	System	global queries. / Global query optimization. Query							
	-	execution and access plan. Concurrency control – 2 phases							
		locks. Distributed deadlocks. Time-based and quorum-							
		based protocols. Comparison. Reliability- non-blocking							
		commitment protocols.							
2	Partitioned	Partitioned networks. Checkpoints and cold starts.							
	Networks	Management of distributed transactions- 2-phase unit							
		protocols. Architectural aspects. Node and link failure							
		recoveries.							
3	Distributed	Distributed data dictionary management. Distributed							
	Database	database administration.							
	Administration	Heterogeneous databases-federated database, reference							
		architecture, loosely and tightly coupled. Alternative							
		architecture. Development tasks, Operation- global task							
		management. Client-server databases- SQL server, open							
		database connectivity. Constructing an application.							

List of Books Text Books:			
Name of	Title of the Book	Edition/ ISSN/	Name of the
Author		ISBN	Publisher
Stefano Ceri & Giuseppe	Distributed Databases: Principles	978-0070265110	McGraw Hill
Pelagatti	and Systems		Education

Course Name: Image Processing

Credit: 3

Course Code: MCA401B

Lecture Hours: 40

Name of the Course:	Image Processing						
Course Code: MCA4	101B	Semester: 4 th					
Duration: 40 Hrs.		Maximum Marks: 100					
Teaching Scheme		Examination Scheme					
Theory: 3		End Semester Exam: 70					
Tutorial: 1		Continuous Assessment: 30					
Credit: 3							
Aim:							
1	Equip students with a so techniques used in image	lid understanding of the core principles and e processing.					
2		image processing methods to analyze, enhance, and es for various applications.					
3		e complex real-world problems related to image n, and pattern recognition.					
Objective:							
1	Understand the fundation processing.	mental principles and techniques of image					
2	Apply methods to enh	hance and manipulate digital images.					
3	Develop skills in imag	ge analysis and computer vision.					
4	Solve real-world prob	lems using image processing techniques.					
Pre-Requisite:							
1		se Management Systems, Basic Knowledge of ogramming Skills & Operating systems					
Course Outcome:							
1	To study the image fu necessary for image p	ndamentals and mathematical transforms rocessing.					
2	To study the image en	hancement techniques					
3	To study image restor	ation procedures					
4	To study the image co	ompression procedures					

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	1	1	1	1	0	0	0	2	3	1	1
CO2	2	2	1	1	2	1	0	1	0	0	0	1	2	1	1
CO3	3	2	2	2	3	1	1	1	0	0	0	2	3	2	1
CO4	3	3	2	2	2	1	1	2	1	1	1	2	3	1	2

Module number	Торіс	Sub-topics
1	Introduction and Digital Image Fundamentals	Digital Image Fundamentals, Human visual system, Image as a 2D data, Image representation – Grayscale and Colour images, image sampling and quantization
	Image enhancement in the Spatial domain	Basic grey level Transformations, Histogram Processing Techniques, Spatial Filtering, Low pass filtering, High pass filtering
2	Filtering in the Frequency Domain	Preliminary Concepts, Extension to functions of two variables, Image Smoothing, Image Sharpening, Homomorphic filtering.
	Image Restoration and Reconstruction	Noise Models, Noise Reduction, Inverse Filtering, MMSE (Wiener) Filtering
3	Colour Image Processing	Colour Fundamentals, Color Models, Pseudo colour image processing
	Image Compression	Fundamentals of redundancies, Basic Compression Methods: Huffman coding, Arithmetic coding, LZW coding, JPEG Compression standard
4	Morphological Image Processing	Erosion, dilation, opening, closing, Basic Morphological Algorithms: hole filling, connected components, thinning, , skeletons
5	Image Segmentation	Point, line and edge detection, Thresholding, Regions Based segmentation, Edge linking and boundary detection, Hough transform
	Object Recognition and Case Studies Object Recognition	Patterns and pattern classes, recognition based on decision- theoretic methods, structural methods, case studies – image analysis Application of Image processing in process industries

ſ

List of Books Text Books:											
Name of Author	Title of the Book	Edition/ ISSN/ ISBN	Name of the Publisher								
Chandra& Majumder	Digital Image Processing &Analysis	2 nd Edition	PHI								
Anil K. Jain	Fundamentals of Digital Image Processing	1 st Edition	Pearson								

Course Name: Parallel Programming

Credit: 3

Course Code: MCA401C

Lecture Hours: 40

Name of the Course:	Parallel Programming						
Course Code: MCA4	01C	Semester: 4 th					
Duration: 40 Hrs.		Maximum Marks: 100					
Teaching Scheme		Examination Scheme					
Theory: 3		End Semester Exam: 70					
Tutorial: 1		Continuous Assessment: 30					
Credit: 3							
Aim:	1						
1	Equip students to write e	efficient parallel programs for faster computation.					
2	Prepare students for induced computing.	astry applications in high-performance and big-data					
3	Foster critical thinking a with parallel techniques.	nd innovation in solving computational challenges					
Objective:							
1	Understand the fundat processing.	mental principles and techniques of image					
2	Apply methods to enh	ance and manipulate digital images.					
3	Develop skills in imag	ge analysis and computer vision.					
4	Solve real-world prob	lems using image processing techniques.					
Pre-Requisite:							
1		se Management Systems, Basic Knowledge of ogramming Skills & Operating systems					
Course Outcome:	1						
1	with respect to lawsan	ion of High-Performance Computing (HPC) ad the contemporary notion that involves lware devices and software agents					
2	Understand, appreciat in Problem Solving.	e and apply parallel and distributed algorithms					
3		f network topology on parallel/distributed sand traffic their performance.					
4	-	ence with agent-based and Internet-based d programming techniques.					

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	2	3	2	1	1	0	1	1	2	3	1	2
CO2	3	3	3	3	3	2	1	0	2	1	2	3	3	3	3
CO3	3	3	2	2	3	2	2	1	0	1	1	2	2	2	3
CO4	3	3	3	3	3	1	1	0	2	1	2	3	3	3	3

Module	Торіс	Sub-topics
number		
1	Fundamentals of	Processes and processors. Shared memory. Fork. Join
	Parallel	constructs. Basic parallel programming techniques- loop
	Programming	splitting, spin locks, contention barriers and row
		conditions.
		Variations in splitting, self and indirect scheduling.
2	Data Dependency	Data dependency-forward and backward block
	and Scheduling	scheduling. Linear recurrence relations. Backward
	Techniques	dependency.
3	Advanced	Performance tuning overhead with a number of
	Performance	processes, effective use of cache.
	Tuning and	Parallel programming examples: Average, mean
	Parallel	squared deviation, curve fitting, numerical integration,
	Programming	travelling salesman problem, Gaussian elimination.
	Techniques	Discrete event time simulation. Parallel Programming
		Constructs in HPF, FORTRAN 95. Parallel
		programming under Unix.

List of Books Text Books:			
Name of Author	Title of the Book	Edition/ ISSN/	Name of the
		ISBN	Publisher

Course Name: Cloud Computing

Credit: 3

Course Code: MCA401D

Lecture Hours: 40

Name of the Course:	Parallel Programming						
Course Code: MCA4	01D	Semester: 4 th					
Duration: 40 Hrs.		Maximum Marks: 100					
Teaching Scheme		Examination Scheme					
Theory: 3		End Semester Exam: 70					
Tutorial: 1		Continuous Assessment: 30					
Credit: 3							
Aim:							
1	Analyze the Evolution as	nd Impact of Cloud Computing					
2	Evaluate Cloud Computi	ing Service Models and Deployment Strategies					
3	Investigate Security Cha	llenges and Solutions in Cloud Computing					
Objective:							
1	To understand the fun	damental concepts of cloud computing.					
2	To explore different c models.	loud service models and cloud deployment					
3	To gain practical know cloud security.	wledge on cloud storage, virtualization, and					
4	-	conomic, organizational, and technological buting and development of applications leveraging d APIs.					
Pre-Requisite:							
1	Basic understanding of c technologies.	computer networks, operating systems, and internet					
Course Outcome:	1						
1	-	in the key concepts and principles of cloud its architecture, components, and models.					
2	Differentiate between various cloud service models (IaaS, PaaS, SaaS) and deployment models (public, private, hybrid, communit and assess their suitability for different scenarios.						
3		echniques and cloud storage solutions to design and efficient cloud-based systems.					
4		y mechanisms and issues, and implement I data and applications in the cloud					

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	1	1	1	1	0	0	0	2	3	1	1
CO2	2	2	1	1	2	1	0	1	0	0	0	1	2	1	1
CO3	3	2	2	2	3	1	1	1	0	0	0	2	3	2	1
CO4	3	3	2	2	2	1	1	2	1	1	1	2	3	1	2

Module number	Торіс	Sub-topics
1	Introduction to Cloud Computing and Cloud Service Models	Definition and Essential Characteristics of Cloud Computing, History and Evolution of Cloud Computing, Benefits and Challenges of Cloud Computing, Cloud Computing Architecture, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Function as a Service (FaaS)
2	Cloud Deployment Models	Public Cloud, Private Cloud, Hybrid Cloud, Community Cloud
3	Virtualization	Concepts of Virtualization, Types of Virtualization (Server, Network, Storage), Virtual Machines (VMs), Containers and Docker
4	Cloud Storage	Storage as a Service (STaaS), Cloud Storage Architectures, Storage Types: Block, File, and Object Storage, Examples: Amazon S3, Google Cloud Storage
5	Cloud Security and Cloud Networking	Security Issues in Cloud Computing, Identity and Access Management (IAM), Data Protection and Encryption, Regulatory and Compliance Issues, Networking Basics for Cloud, Software-Defined Networking (SDN), Network Function Virtualization (NFV), Cloud Load Balancing
6	Cloud Application Development and Future Trends	Developing Cloud-Native Applications, Microservices Architecture, DevOps and CI/CD Pipelines, Example Platforms: AWS Lambda, Google Cloud Functions Edge Computing, Serverless Computing, Quantum Cloud Computing, AI and Machine Learning in the Cloud

List of Books Text Books:	1		1		
Name of Author	Title of the Book	Edition/ ISSN/ ISBN	Name of the Publisher		
Rajkumar Buyya, Christian Vecchiola, Sb Thamarai Selvi	Chapter 1: Introduction	1 st / 978- 1259029950	Mc Graw Hill		
Rajkumar Buyya, Christian Vecchiola, Sb Thamarai Selvi	Mastering Cloud Computing Chapter 3: Virtualization Mastering Cloud Computing	1 st / 978- 1259029950	Mc Graw Hill		
Rajkumar Buyya, Christian Vecchiola, Sb Thamarai Selvi	Chapter 4: Cloud Computing Architecture	1 st / 978- 1259029950	Mc Graw Hill		
	Mastering Cloud Computing				
Rajkumar Buyya, Christian Vecchiola, Sb Thamarai Selvi	Chapter 9: Cloud Platforms in Industry Mastering Cloud Computing	1 st / 978- 1259029950	Mc Graw Hill		
Rajkumar Buyya, Christian Vecchiola, Sb Thamarai Selvi	Chapter 10: Cloud Applications Mastering Cloud Computing	1 st / 978- 1259029950	Mc Graw Hill		
Rajkumar Buyya, Christian Vecchiola, Sb Thamarai Selvi	Chapter 5: Virtual Machines Provisioning and Migration Services Mastering Cloud Computing	1 st / 978- 1259029950	Mc Graw Hill		
Arshdeep Bahga, Vijay Madisetti	Chapter 12: Cloud Security Cloud Computing A Hands-On Approach	1 st / 9788173719233	University Press		
Reference Books:					
Thomas Erl, Zaigham Mahmood, Ricardo Puttini	Cloud Computing: Concepts, Technology & Architecture	1 st /978- 0133387520	Prentice Hall		
Michael J. Kavis	Architecting the Cloud: Design Decisions for Cloud Computing Service Models (SaaS, PaaS, and IaaS)	1 st /978- 1118617618	Wiley		
Rajkumar Buyya, Christian Vecchiola, S. Thamarai Selvi	Mastering Cloud Computing: Foundations and Applications Programming	1 st / 978- 0124114548	Morgan Kaufmann		

Course Name: Compiler Design

Credit: 3

Course Code: MCA402A

Lecture Hours: 40

Name of the Course: Compiler Design						
Course Code: MCA402A		Semester: 4 th				
Duration: 40 Hrs.		Maximum Marks: 100				
Teaching Scheme		Examination Scheme				
Theory: 3		End Semester Exam: 70				
Tutorial: 1		Continuous Assessment: 30				
Credit: 3						
Aim:						
1	To gain Knowledge of	Various aspects of a Compiler.				
2	To enhance Ability to identify qualities of a good solution of NFA, DFA etc.					
3	To implement NFA to DFA conversion techniques and different parsing methods to solve problems.					
Objective:						
1	Provide you with the knowledge and expertise to become a proficient compiler design.					
2	Demonstrate an understanding of parsing and polishing expression concepts that are vital for compiler design.					
3	To produce DFA from an NFA to understand a basic compiler.					
4	Critically evaluate NFA based on their design and create DFA from that.					
Pre-Requisite:						
¹ Proficiency in data structure, graph theory, automata theory and C programming.						
Course Outcome:	·					
1	Understand fundamentals of compiler and identify the relationships among different phases of the compiler.					
2	Understand the application of finite state machines, recursive descent, production rules, parsing, and language semantics.					
3	Analyze & implement required module, which may include front-end, back-end, and a small set of middle-end optimizations.					
4	Use modern tools and technologies for designing new compiler.					

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	-	-	-	-	-	-	-	-	-	2	-	-
CO2	2	3	2	2	-	-	-	-	-	-	-	-	2	2	-
CO3	2	3	3	2	-	-	-	-	1	1	2	1	2	3	2
CO4	2	2	2	3	3	-	-	-	1	1	2	2	-	3	3

Module number	Торіс	Sub-topics					
1	Context Free	Classification of grammars. Context free grammars.					
	Grammars	Deterministic finite state automata (DFA) Non-DFA					
		Scanners. Top down parsing, LL grammars. Bottom up					
		parsing.					
2	Polishing	Polishing expressions, Operator precedence grammar, IR					
	Expressions	grammars, Comparison of parsing methods. Error handling.					
3	Symbol table	Symbol table handling techniques. Organization for non-					
	handling techniques	block and block-structured languages. Run time storage					
		administration. Static and dynamic allocation. Intermediate					
		forms of source program. Polish N-tuple and syntax trees.					
		Semantic analysis and code generation. Code optimization,					
		folding, and redundant sub-expression evaluation.					
		Optimization within iterative loops.					

List of Books Text Books:						
Name of Author	Title of the Book	Edition/ ISSN/ ISBN	Name of the Publisher			
Aho, Lam, Sethi, Ullman	Compilers – Principles, Techniques & Tools	2 nd Edition	Pearson			
Holub	Compiler Design in C	2 nd Edition	Prentice Hall			
Mishra, Chandrasekaran	Theory of Computer Science: Automata, Languages and Computation	3 rd Edition	PHI			

Course Name: Mobile Computing

Credit: 3

Course Code: MCA402B

Lecture Hours: 40

Name of the Course:	Mobile Computing						
Course Code: MCA4	02B	Semester: 4 th					
Duration: 40 Hrs.		Maximum Marks: 100					
Teaching Scheme		Examination Scheme					
Theory: 3		End Semester Exam: 70					
Tutorial: 1		Continuous Assessment: 30					
Credit: 3							
Aim:							
1	To understand the funda computing	mental concepts and technologies driving mobile					
2	To understand Mobile N	etworking and Connectivity					
3	To address challenges in	mobile security and optimization					
Objective:							
1	Gain a foundational und including cellular netwo	derstanding of mobile communication systems, orks and their evolution.					
2		s of mobile networking protocols, covering aspects routing in unique mobile environments.					
3	Explore the various mol	bile communication technologies and protocols.					
4	Develop critical knowle computing devices and	edge of security challenges and solutions for mobile applications.					
Pre-Requisite:							
1	Knowledge of comput	er fundamentals and networking concepts.					
Course Outcome:	Γ						
1	Define mobile technol communications.	logies in terms of hardware, software, and					
2		ting nomenclature to describe and analyze uting frameworks and architectures.					
3		ness of different mobile computing					
4	Describe how mobile computing technologi	technology functions to enable other es.					

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	2	2	3	2	1	0	0	0	0	0	3	2	2
CO2	2	3	2	2	3	2	1	0	0	0	0	0	3	3	2
CO3	2	3	2	2	3	2	1	0	0	0	0	0	3	3	2
CO4	2	2	2	2	3	2	1	0	0	0	0	0	3	3	2

Module number	Торіс	Sub-topics
2	Introduction: Wireless Transmission: Access Control: CDMA:	Introduction and Application of Mobile Computing Wireless Transmission: Frequency for radio transmission, Signals, Antennas, Signal propagation, Multiplexing, Modulation, Spread spectrum, Cellular systems, Medium Access Control: Motivation for a specialised MAC: Hidden and Exposed terminals. Near and Far terminals; SOMA, FOMA; TOMA: Fixed TOM, Classical Aloha, Slotted Aloha, Carrier sense multiple access, Demand assigned multiple access, PRMA packet reservation multiple access, PRMA packet reservation multiple access, reservation TOMA, Multiple access with collision avoidance, Polling, Inhibit sense multiple access
	GSM:	 CDMA: Spread Alona multiple access Telecommunication Systems: GSM: Mobile Services, System Architecture, radio interface, Protocols, Localization and Calling, Handover, Security, New Data Services, DECT, Systems Architecture Protocol Architecture: TETRA I, UMTS and IMT-2000, UMTS Basic Architecture, UTRA FDD mode, UTRA TDD mode
3	Satellite Systems: Wireless LAN: IEEE 802.11:	Satellite Systems: History, Applications, Basics: GEO, LEO, MEO, Routing, Localization. Handover Examples: Broadcast Systems: Overview, Cyclic Repetition, Digital Audio; broadcasting: Multimedia object transfer Protocol; Digital Video Broadcasting Wireless LAN: Infrared vs. Radio Transmission, Infrastructure and Ad Hoc networks, IEEE 802.11: System Architecture, Protocol Architecture, Physical Layer, Medium Access Control Layer, MAC management, Future development; HIPERLAN: Protocol architecture, Physical Layer Channel access control. Sub layer, Medium Access control sub layer, Information bases and networking;

	Bluetooth:	Bluetooth: User Scenarios, Physical Layer, MAC layer, Networking, Security, Link management. Wireless ATM: Motivation for WATM, Wireless ATM working group, WATM services, Reference model: Example configurations, Generic reference model;								
4	Handover:	Handover: Handover reference model, Handover requirements, Types of handover, Handover scenarios, Backward handover, Forward handover;								
	Location management:	Location management: Requirements for location management, Procedures and Entities; Addressing, Mobile quality of service, Access point control protocol.								
	Mobile Network Layer:	Mobile Network Layer: Mobile IP: Goals, assumptions and requirements, Entities and Terminology, IP packet delivery, Agent advertisement and discovery, Registration,								
5	Tunneling	Tunneling and Encapsulation, Optimizations, Reverse Tunnelling, Ipv6; Dynamic host configuration protocol,								
	Ad hoc networks	Ad hoc networks: Routing, Destination sequence distance vector, Dynamic source routing, Hierarchical algorithms, Alternative metrics.								
	Mobile Transport Layer	Mobile Transport Layer: Traditional TCP: Congestion control, Slow start, Fast retransmit/fast recovery, Implications on mobility; Indirect TCP, Snooping TCP, mobile RCP, Fast retransmit/fast recovery, Transmission/time-out freezing, Selective retransmission, Transaction oriented TCP. Support for Mobility:								
6	File systems:	File systems: Consistency, Examples; World Wide Web: Hypertext transfer protocol, Hypertext markup language, Some approaches that might help wireless access, System architectures;								

List of Books Text Books:											
Name of Author	Title of the Book	Edition/ ISSN/ ISBN	Name of the Publisher								
Jochen Schiller	Mobile Communications	2nd Edition	Pearson								
Reference Books:											
William Stallings	Wireless Communications and Networks		PHI								
Rappaport	Wireless Communications Principals and Practices	2nd Edition	Pearson								
Ashoke Talukder	Mobile Computing	2nd Edition	ТМН								

Course Name: Embedded Systems

Credit: 3

Course Code: MCA402C

Lecture Hours: 40

Name of the Course:	Embedded Systems						
Course Code: MCA4	102C	Semester: 4 th					
Duration: 40 Hrs.		Maximum Marks: 100					
Teaching Scheme		Examination Scheme					
Theory: 3		End Semester Exam: 70					
Tutorial: 1		Continuous Assessment: 30					
Credit: 3							
Aim:	1						
1	To introduce the fundam systems.	entals, architecture, and applications of embedded					
2	To develop an understan microcontrollers, and int	ding of real-time operating systems (RTOS), terfacing techniques.					
3	To familiarize students v debugging of embedded	with design methodologies, programming, and systems.					
Objective:							
1	To understand embedde constraints.	ed system architecture, components, and real-time					
2	To explore microcontro interfacing.	ollers, memory management, and peripheral					
3	To learn embedded prog applications.	gramming using C and Assembly for real-world					
4	To analyze real-time op management in embedd	erating systems (RTOS), task scheduling, and power ed systems.					
Pre-Requisite:							
1	Basic knowledge of co operating systems.	omputer architecture, C programming, and					
Course Outcome:	1						
1	Explain the architectu systems.	re, design, and components of embedded					
2	Implement microcontr interfacing.	roller-based applications with peripheral					
3	Develop embedded so	ftware using C and Assembly programming.					
4	Analyze the role of R' embedded systems.	TOS, scheduling, and power management in					

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	2	1	1	0	1	1	1	2	3	1	2
CO2	3	2	3	2	3	1	1	0	1	1	1	2	3	2	3
CO3	3	3	3	2	3	1	1	0	1	1	1	3	3	2	3
CO4	3	3	3	2	3	2	2	1	1	1	1	3	3	2	3

Module	Торіс	Sub-topics
number		
1	Introduction to Embedded Systems:	Definition of Embedded System, Embedded Systems Vs General Computing Systems, History of Embedded Systems, Classification of Embedded Systems, Relation between Microcontroller and Embedded System, Major Application Areas, Purpose of Embedded Systems, Characteristics and
		Quality Attributes of Embedded Systems
	Embedded Processors:	Types of Embedded Processors, Microprocessors, Microcontrollers, DSP, Embedded Processors from Future Electronics, Applications for embedded processors, Choosing the Right Embedded Processor.
2	Embedded Systems	Application- and Domain-Specific: Washing Machine- Application Specific Example of Embedded System, Automotive- Domain Specific Example of Embedded System. The core of the Embedded System: General Purpose and Domain Specific Processors, ASICs, PLDs, Commercial Off-The-Shelf Components (COTS), Embedded Memories: Scratchpad Memories, Cache Memories, Flash Memories, Memory according to the type of Interface, Memory Shadowing and memory selection for Embedded Systems, Sensors and Actuators. Communication Interface: Onboard and External Communication Interfaces.
3	Embedded Firmware: RTOS-Based Embedded System Design:	Reset Circuit, Brown-out Protection Circuit, Oscillator Unit, Real Time Clock, Watchdog Timer, Embedded Firmware Design Approaches and Development Languages. Operating System Basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task
4	Task Communication:	Scheduling. Shared Memory, Message Passing, Remote Procedure Call and Sockets

Task Synchronization:	Task Communication/Synchronization Issues, Task
	Synchronization Techniques, Device Drivers, How to Choose
Trends in	an RTOS.
Embedded Industry:	Processor Trends in Embedded System, Embedded OS Trends, Development Language Trends

List of Books Text Bo	oks:		
Name of Author	Title of the Book	Edition/ ISSN/ ISBN	Name of the Publisher
Shibu K. V	Introduction to Embedded Systems	2nd Edition	Mc Graw Hill
Raj Kamal	Embedded Systems	4th Edition	TMH
Reference Books:			
Frank Vahid	Embedded System Design	1st Edition	John Wiley
Lyla B Das	Embedded Systems	1st Edition	Pearson
David E. Simon	An Embedded Software Primer	1st Edition	Pearson Education

Course Name: Operation Research & Optimisation Techniques

Course Code: MCA403

Credit: 3

Lecture Hours: 40

Name of the Course	: Operation Research & (Optimisation Techniques					
Course Code: MCA	403	Semester: 4 th					
Duration: 40 Hrs.		Maximum Marks: 100					
Teaching Scheme		Examination Scheme					
Theory: 3		End Semester Exam: 70					
Tutorial: 1		Continuous Assessment: 30					
Credit: 3							
Aim:	-						
1	To introduce the fundam optimization techniques	entals of Operations Research (OR) and for decision-making.					
2	To develop the ability to in computing and busine	formulate, analyze, and solve optimization problems as applications.					
3	To apply mathematical r world problem-solving.	nodeling and computational techniques for real-					
Objective:							
1	To understand linear pro in OR.	ogramming, transportation, and assignment models					
2	To apply optimization to network flow analysis.	echniques such as dynamic programming and					
3	To analyze game theory for decision-making.	r, queuing models, and inventory control techniques					
4	To implement computat programming tools.	ional algorithms for optimization problems using					
Pre-Requisite:							
1	Basic knowledge of m	athematics, probability, and programming logic.					
Course Outcome:	1 x						
1	Explain the concepts, m	odels, and techniques of Operations Research.					
2	Formulate and solve op	timization problems using mathematical models.					
3	Apply game theory, que scenarios.	euing models, and inventory control for real-world					
4	Use computational tools problems.	and algorithms for solving OR and optimization					

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	1	1	0	0	0	1	1	2	2	1	1
CO2	3	3	3	2	2	1	0	0	0	1	2	2	3	2	2
CO3	2	3	2	2	1	2	1	0	0	1	2	2	2	2	2
CO4	3	3	3	2	3	1	0	0	0	1	2	3	3	3	3

Module number	Торіс	Sub-topics
1	Linear and Integer Programming	Linear Programming-Simplex Method, Duality Method, Assignment Problem, Transportation Problem
2	Network Optimization and Project Scheduling	Integer Programming-Cutting Plane, Branch & Bound Network Optimization Models- The shortest path problem, Minimum Spanning Tree Algorithm, Maximal Flow Algorithms, PERT/ CPM.
3	Dynamic Programming and Queuing Theory	Dynamic Programming- Characteristics, Deterministic & Probabilistic Dynamic Programming. Queuing Theory- Basic Structure, Exponential distribution, Birth-and-Death Model, M/M/I Queue.
4	Game Theory and Sequencing	Game Theory-Two person Zero Sum game, saddle point determination, algebraic method, graphical method etc.
5	Inventory Control Models	Inventory Control- Determination of EOQ, Components, Deterministic Continuous & Deterministic Periodic Review Models, Stochastic Continuous & Stochastic Periodic Review Models. Sequencing- Two men two machines, Three Men Two Machines

List of Books Text Books:

- 1. Operation Research, Kanti Swaroop
- 2. Operation Research, V.K. Kapoor
- 3. Operation Research, Paneer Selvam, PHI
- 4. Operations Research, Hillier & Lieberman, TMH
- 5. Operations Research, Kalavati, VIKAS
- 6. Operation Research, Humdy Taha, PHI
- 7. Statistics, Random Process & Queuing Theory, Prabha, Scitech
- 8. Operations Research, Vijayakumar, Scitech
- 9. Quantitative Techniques, Vol.1 & II , L.C. Jhamb, EPH

Course Name: Management & Accounting

Course Code: MCA405

Lecture Hours: 40

Name of the Course: Management & Accounting							
Course Code: MCA4	05	Semester: 4 th					
Duration: 40 Hrs.		Maximum Marks: 100					
Teaching Scheme		Examination Scheme					
Theory: 3		End Semester Exam: 70					
Tutorial: 1		Continuous Assessment: 30					
Credit: 2							
Aim:							
1	To gain Knowledge of b	asic aspects of Management					
2	To enhance Ability to id Strategy	entify qualities of a good Management Control and					
3	To implement learned C problems	oncept of Financial and Cost Accounting to solve					
Objective:							
1	The fundamental in basi	ic in Management					
2	Basic concepts in the M	anagement control and strategy					
3	Principles of Financial	Accounting					
4	Significance of Cost Ac	ccounting in the Accounting field					
Pre-Requisite:	1						
1	Proficiency in Basic of	f Management and Accounting					
Course Outcome:	1						
1	—	ourse students are expected to learn various heduling, organizing, staffing, directing, economics					
2	On completion of this control system.	ourse students are expected to design Management					
3	—	ourse students are expected to do a comparative t Financial statement and Financial accounting					
4		ourse students are expected to acquire adequate solve a real-life Cost Volume Profit analysis and					

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2	0	0	2	1	1	0	1	3	2	2	0	0
CO2	2	3	3	1	1	2	0	1	1	2	3	2	3	1	1
CO3	2	3	3	1	1	2	0	1	0	2	3	2	3	2	1
CO4	3	3	3	1	1	2	0	1	0	1	3	3	3	2	1

Module number	Торіс	Sub-topics
1	Basics of management	Planning, scheduling, organizing, staffing, directing, controlling Managerial economics and financial management, productivity management Human resource development and management, selection, training and role of IT
2	Management Control Systems	Introduction to management control systems: goals, strategies; Performance measures
3	Strategy	Firm and its environment, strategies and resources, industry structure and analysis, corporate strategies and its evaluation, strategies for growth and diversification, strategic planning
4	Financial Accounting	Financial statements and analysis Conceptual framework of cost accounting. Financial accounting computer packages.
5	Cost Accounting	Cost-volume profit (CVP) relationship, budgeting, cost accumulation system, variable and absorption costing system

List of Books Text Book	s:		
Name of Author	Title of the Book	Edition/ ISSN/ ISBN	Name of the
			Publisher
Khan & Jain	Management Accounting	8 th Edition	Mc Graw Hill
Harold Koontz	Essentials of Management	11 th Edition	Mc Graw Hill
Reference Books:		I	1
Ramchandran	Accounting for Management	2 nd Edition	Scitech
	(Management Accounting)		Publications

Course Name: General Studies & Current Affairs - IV Credit: 0.5

Course Code: MCA(GS)401

Lecture Hours: 20

Name of the Course: General Studies & Current Affairs - IV							
Course Code: MCA	(GS)401	Semester: 4 th					
Duration: 48 Hrs.		Maximum Marks: 100					
Teaching Scheme		Examination Scheme					
Theory: 2		End Semester Exam: 100					
Tutorial: 0		Continuous Assessment: 100					
Credit: 0.5							
Aim:		I					
Sl. No.							
1	To enhance quantitative solving in professional e	aptitude and logical reasoning for effective problem- nvironments.					
2	To develop oral, listenin interactions.	g, and reading communication skills for workplace					
3	To equip students with p correspondence and pres	practical communication skills, including professional sentations.					
Objective:							
Sl. No.							
1	To strengthen quantitativ making.	ive and logical reasoning for analytical decision-					
2	To improve verbal and n articulation and clarity.	on-verbal communication skills, including					
3	To enhance listening an processing.	d reading comprehension for better information					
4	To develop practical con business communication	nmunication techniques, such as presentations, , and public speaking.					
Pre-Requisite:							
Sl. No.							
1.	Basic understanding of I concepts.	English language and fundamental mathematical					
Course Outcome:							
1.	Apply quantitative aptit professional scenarios.	ude and logical reasoning skills in					
2.	Demonstrate effective o interactions.	ral and written communication for workplace					

3.	Exhibit active listening and reading comprehension for better understanding and response.
4.	Implement practical communication strategies, including professional presentations and business communication.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	3	2	2	2	1	0	0	1	2	1	3	2	3	2
CO2	2	1	1	0	1	1	0	0	1	3	1	2	1	1	1
CO3	2	2	1	0	1	1	0	0	1	3	1	2	1	1	1
CO4	2	1	1	0	1	1	0	0	1	3	1	2	1	1	1

Module number	Торіс	Sub-topics
1	History	Socio cultural Changes: Introduction of western Education, Ram Mohan Roy and BramhoSamaj, Young Bengal movevemnt, Arya samaj, Ramkrishna Mission, Aligarh movement, Vidyasagar Revolt of 1857: Cause, Character, cause of failure, impact Partition of Bengal: Cause, Swadeshi and Boycott, Newspaper Indian National congress
2	Geography	 Natural vegetation of India Minerals and multipurpose river projects of India Agriculture of India Types of Agriculture (Intensive subsistence, Extensive subsistence, Mixed farming, Jhoom cultivation) Types of crops (Rice, Wheat, Sugarcane, Pulses, Cotton, Jute, Tobacco)
3	Macro	1. Indian Planning & NITI Aayog
	Economics	 Indian Foreign trade and International organizations Balance of Payment and Balance of Trade.
4	Constitution	 Election Commission- Related Articles, Power & Function & Provision of Election Emergency Provisions- Related Articles, Conditions Application, Supreme power during emergency. National Commission for SC/ST/OBC, Function of the commissions, Special offer & related articles for SC/ST/OBC Different amendments of Indian Constitution & the related articles Formation UPSC, Related Articles, Scope & Power, Duties of CAG, Formation SPSC, Related Articles, Scope & Power.

References

1. History:

India's Ancient Past (Ancient History) : R.S. Sharma

History of medieval India (Medieval History): Satish Chandra History of Modern India (Modern History): Bipin Chandra

India's struggle for Independence (Modern History): Bipin Chandra

Geography:

India- Khullar Economics:

Indian Economy- TATA Mc Graw Hill/Ramesh Singh Indian Economy – Arihant

Constitution:

Indian Constitution- D.D. Basu

Our Constitution- Subhash.C. Kashyap

Name of the Cou	rse: Competitive Apt	itude Training – IV				
Course Code: M	CA(GS)481	Semester: 4 th				
Duration: 20 Hrs	5.	Maximum Marks: 100				
Teaching Schem	е	Examination Scheme				
Theory: 2		End Semester Exam: 100				
Tutorial: 0		Continuous Assessment: 100				
Credit: 0.5						
Aim:						
Sl. No.						
1		reasoning, analytical thinking, and problem-solving skills betitive exams and job recruitment.				
2		sh language proficiency, focusing on grammar, nd professional communication.				
3		in data interpretation, improving the ability to analyze and problems efficiently.				
Objective:						
Sl. No.						
1	To strengthen Eng competitive aptitu	glish grammar, vocabulary, and comprehension skills for ude tests.				
2	To develop logica solving technique	al and analytical reasoning through structured problem- es.				
3	To enhance profic graphical analysis	ciency in data interpretation, including tabular and s.				
4	To improve forma professional settin	al communication skills, such as official letter writing, for ngs.				
Pre-Requisite:						
Sl. No.						
1.	Basic understand reasoning.	ling of English grammar and elementary mathematical				
Course Outcome						
1.	-	iciency in verbal English, including grammar, eading comprehension.				
2.	Apply logical reasoning and problem-solving techniques in competitive exam scenarios.					
3.	Analyze and interpret data from tables, graphs, and charts for decision- making.					
4.	Develop effective writing.	e written communication skills, including official letter				

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	0	1	1	0	0	1	3	1	2	1	1	1
CO2	3	3	2	2	2	1	0	0	1	2	1	3	2	3	2
CO3	3	3	2	2	2	2	1	0	1	2	1	3	2	3	2
CO4	2	1	1	0	1	1	0	0	1	3	1	2	1	1	1

Module number	Торіс	Sub-topics
1	Quantitative Aptitude	 Permutation & Combination. Probability- basic concepts of probability , different theorems & applications, binomial, poison & normal Distributions. Geometry- Concept of different shapes like triangle, quadrilateral, rectangle, square, circle etc. different theorems & their applications. Mensuration- Formulae on triangles, square, Rhombus, parallelogram, sphere, circle, cone, pyramid etc, Application based problem solving. Coordinate Geometry- Locus, Straight lines, Circle etc
2	Objective English Soft Skills	 Miscellaneous Corrections on Tense part 1. Miscellaneous Corrections on Tense part 2. Fill in the blanks (Single Blank) Miscellaneous Vocabulary Communication Development. Personality Development.
4	Computer proficiency	1. C programming, Basics of C++

List of Books Text Books:

- 1. Fastrack objective Arithmetic: Arihant
- 2. Quantitative aptitude for Competitive exam (4th Edition): TATA Mc Graw Hill
- 3. Quantitative aptitude for Competitive exam (3rd Edition): PEARSON

Course Name: Major Project

Course Code: MCA491

Name of the C	ourse: Major Project								
Course Code:	MCA491	Semester: 4 th							
Duration: 12 Weeks. Teaching Scheme		Maximum Marks: 100							
		Examination Scheme							
Practical: 0		Practical Sessional Internal continuous evaluation: 100							
Credit: 15		Practical Sessional external examination: 100							
Aim:									
Sl. No.									
1		To enable students to apply theoretical knowledge to real-world problems through project development.							
2	To enhance problem-	To enhance problem-solving, software development, and research skills.							
3	To develop teamwork	To develop teamwork, project management, and documentation abilities.							
Objective:									
Sl. No.									
1	To identify and define	To identify and define a real-world computing problem.							
2	To design and implem technologies.	To design and implement a software solution using appropriate tools and technologies.							
3	To analyze and evalue system.	To analyze and evaluate the efficiency and effectiveness of the developed system.							
4	To document and pre-	To document and present the project findings professionally.							
Pre-Requisite:									
Sl. No.									
1.	Knowledge of program (SDLC).	mming, databases, and software development lifecycle							
Course Outco	ne:								
1.	Identify and define a applications.	problem statement relevant to computing							
2.	Develop a functional	prototype or software solution using modern tools.							
3.	Demonstrate analytic	al and technical skills in project execution.							
4.	Present a well-docum	ented project report with findings and future scope.							

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	1	0	1	1	1	2	2	3	2	2
CO2	3	3	3	2	3	1	0	1	1	1	2	3	3	2	3
CO3	3	3	3	2	3	1	0	1	1	2	2	3	3	2	3
CO4	2	2	2	1	2	1	0	1	1	3	2	2	2	1	2

-- END --